
Towards the Essence of Hygiene

Michael D. Adams

University of Utah
University of Illinois at Urbana/Champaign

http://michaeldadams.org/

Abstract

Hygiene is an essential aspect of Scheme’s macro system that pre-
vents unintended variable capture. However, previous work on hy-
giene has focused on algorithmic implementation rather than pre-
cise, mathematical definition of what constitutes hygiene. This is
in stark contrast with lexical scope, alpha-equivalence and capture-
avoiding substitution, which also deal with preventing unintended
variable capture but have widely applicable and well-understood
mathematical definitions.

This paper presents such a precise, mathematical definition of
hygiene. It reviews various kinds of hygiene violation and presents
examples of how they occur. From these examples, we develop a
practical algorithm for hygienic macro expansion. We then present
algorithm-independent, mathematical criteria for whether a macro
expansion algorithm is hygienic. This characterization corresponds
closely to existing hygiene algorithms and sheds light on aspects of
hygiene that are usually overlooked in informal definitions.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Algorithms; Languages

Keywords Hygiene; Macros; Nominal logic

1. Introduction

Hygiene is an essential aspect of the Scheme macro system that
prevents unintended variable capture. For example, suppose we
have a short-circuiting or macro that expands as follows.

(let ([x #t])
(or (begin (write “!”) #f) x))

(let ([x #t])
(let ([tmp (begin (write “!”) #f)])

(if tmp tmp x)))

This expansion introduces a let binding for (begin (write
“!”) #f) in order to avoid duplicating its side effect. However,
this let binding can cause trouble. Suppose the original expres-
sion used tmp instead of x. In a naive macro system, the result
would be the following expansion.

Copyright c© ACM, 2015. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in POPL ’15: Proceedings of the 42nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January
2015, http://dx.doi.org/10.1145/2676726.2677013.

POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright c© 2015 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2677013

(let ([tmp #t])
(or (begin (write “!”) #f) tmp))

(let ([tmp #t])
(let ([tmp (begin (write “!”) #f)])

(if tmp tmp tmp)))

In the result of this expansion, tmp is captured and no longer bound
to what it was at the call to or. Changing the binding name from x
to tmp has changed the result from #f to #t.

Hygiene prevents these problems. In a hygienic macro expan-
sion system, macros are automatically as well-behaved with regard
to variable names as the core forms of the language, and users can
rely on the expected alpha equivalences. Essentially, hygiene is the
moral equivalent of lexical scoping at the macro level.

Hygiene has a long history in the literature (Kohlbecker et al.
1986; Kohlbecker and Wand 1987; Bawden and Rees 1988; Clinger
and Rees 1991; Clinger 1991; Dybvig et al. 1993; Herman and
Wand 2008; Herman 2010). However, these works leave hygiene
defined informally and focus on the algorithmic aspects or apply to
only a restricted set of macros that follow certain typing disciplines
and do not handle the general case. Furthermore, while they all pur-
port to implement similar concepts of hygiene, they use divergent
implementation approaches that are difficult to formally compare
without a precise, formal definition of hygiene.

This paper proposes such a definition of hygiene. This definition
is formally precise and connects hygiene to concepts from nominal
logic (Gabbay and Pitts 2002). In particular, it shows that hygiene
is a combination of alpha equivalence and nominal logic’s notion
of equivariance. This definition is applicable to a wide variety of
macro systems, and deriving a practical algorithm that satisfies it
leads to connections with existing hygiene algorithms such as the
syntax-case expansion algorithm used in Scheme (Dybvig et al.
1993). Finally, we use this definition to highlight important aspects
of hygiene that are omitted from traditional, informal descriptions
of hygiene.

The organization of this paper is as follows. In Section 2, we
give an overview of the basic ideas behind our characterization of
hygiene. In Section 3, we review the fundamentals of macro expan-
sion in Scheme. In Section 4, we examine various sorts of hygiene
violations and how they occur. We show why traditional notions
of alpha equivalence and other naive methods for ensuring hygiene
are not sufficient. We show that identifiers in a general hygienic
system must be diatomic rather than monatomic, and we present
a simple algorithmic method for ensuring hygiene. In Section 5,
we develop a formal, mathematical characterization of hygiene in
terms of nominal logic. In the process, we demonstrate a new sort
of hygiene violation that, while implicitly handled by traditional
hygiene algorithms, is not widely discussed. In Section 6, we show
how this characterization corresponds to the syntax-case algo-
rithm. Finally, in Section 7 we discuss related work, and in Section
8 we conclude.

1 1201411.041221

2. Overview of the Main Ideas

While we give a more complete treatment of the mathematical
concepts of hygiene in Section 5, the main ideas are as follows.

We show that a syntactic representation that treats identifiers
as simple atomic values with no auxiliary information does not
contain enough information to express the structures needed to
implement a hygienic macro system as powerful as Scheme’s. We
can, however, express those structures by splitting identifiers into a
pair of atoms. Identifiers are thus diatomic instead of monatomic,
and we write them as <r b> where r is the reference part of the
identifier and is inhabited by a reference atom while b is the binder
part and is inhabited by a binder atom.

Next, we formally define hygiene in terms of two criteria. The
first, the Reference Hygiene Criterion, requires that each macro
expansion step respect alpha equivalence with respect to reference
atoms in the fully expanded, outer parts of the syntax that have
known binding structures.

Unfortunately, we cannot use alpha equivalence in the partially
expanded, inner parts of the syntax as their binding structures are
unknown. To handle this, the second criterion, the Binder Hy-
giene Criterion, is expressed in terms of an equivariance condition
with respect to binder atoms that must hold on all macro transfor-
mation functions.

In essence, the Reference Hygiene Criterion requires that the
expansion process respect alpha equivalence in the parts of the
syntax with known binding structures. In parts of the syntax where
the binding structure is unknown, this will not work, so the Binder
Hygiene Criterion requires that macro transformers respect any
possible binding structure that that part of the syntax may have.

Together, these two criteria formally define hygiene, and we
specify these using nominal logic in Section 5. These criteria are
consistent with traditional, informal definitions of hygiene (Baw-
den and Rees 1988; Clinger and Rees 1991). The Reference Hy-
giene Criterion ensures that references introduced by a macro are
not captured by bindings other than those introduced by the macro.
The Binder Hygiene Criterion ensures that binders introduced by a
macro are always freshly generated and thus cannot capture refer-
ence other than those introduced by the macro.

Finally, though introduced-reference and introduced-binder hy-
giene are usually described as the two main aspects of hygiene, the
equivariance used to define the Binder Hygiene Criterion requires
a third aspect. Namely, macro transformers must not observe the
values of binders in their inputs other than to compare them with
other binders in their inputs. This third form of hygiene is actually
enforced by traditional hygiene algorithms even though informal
descriptions of those algorithms do not discuss it.

3. Basics of Scheme Macros

Before considering hygiene, we briefly review the basics of Scheme
macros and how they operate. As shown in Figure 1, macro ex-
pansion occurs between the reader, which parses a string into an
s-expression, and the interpreter or compiler, which evaluates or
compiles the fully expanded term.

At the start of this process, an s-expression is taken from the
reader and injected into the domain of syntax objects. For our pur-
poses, a syntax object is an s-expression with identifiers instead of
symbols. In a naive expander these identifiers are plain symbols, but
in a hygienic expander they carry extra scoping and binding infor-
mation. In some presentations, syntax objects additionally contain
other information such as source locations or data structures that
assist the algorithmic performance of macro expansion. We omit
these as they are not relevant to the essential theory of hygiene. In
the remainder of this paper, we deal only with syntax objects and
do not use s-expressions.

String
Read
−−−→ S-expression

Inject
−−−−→ Syntax

0

 Syntax
1
 . . . Syntaxn

Compile
−−−−−−→ Executable

Figure 1. Scheme’s compilation pipeline

Next comes the core expansion process. We model this as a
sequence of small-step rewrites using . Each step corresponds to
one particular macro invocation or expansion of a core form. The
expansion process always proceeds with the outermost expression
that can be expanded. We thus divide the program into two parts.
We call the inner part that is waiting to be further expanded u-
syntax as its binding structure is unknown, and we call the outer
part that is already fully expanded k-syntax as its binding structure
is known.

There is no more expansion to be done in k-syntax, and we know
the form of each component of k-syntax. Thus we can represent
it using the abstract-syntax representations used internally by the
compiler. Conversely, the structure of the u-syntax waiting to ex-
pand is not yet manifest. In order to distinguish u-syntax from k-
syntax, we adopt the notation of underlining the former. Thus, for
example, we may say that the u-syntax (lambda (x) (+ 1 x))
expands after a number of steps to the k-syntax (lambda (x) (+
1 x)). Note that u-syntax may be modified by macro expansion
though k-syntax cannot. Thus, while we might expect the expres-
sion (f x y) to be a function call, it may instead be a macro call if
f is bound to a macro definition. Likewise, even though (lambda
(x) y) is usually a lambda expression, it may be a macro or func-
tion call due to a local definition of lambda. This is resolved only
once this u-syntax is fully expanded into k-syntax. We define both
u-syntax and k-syntax in Figure 2 where we use vector notation
for repeated elements. For simplicity of presentation, we gloss over
which repetitions are zero-or-more versus one-or-more, and we in-
clude let-style forms as core forms instead of encoding them in
terms of lambda. Using these forms, the or macro can be written
as in Figure 3. The full expansion sequence for (let ([x #t])
(or #f x)) is then as shown in Figure 4.

To define a macro, we use let-syntax and letrec-syntax.
These are similar to let and letrec except that the left-hand
sides of their bindings are the names of macros and the right-hand
sides are macro transformers. For example, we use the following to
define the or macro where f is the macro transformer for or.

(letrec-syntax ([or f]) ...)

Macros are generally invoked using a function-call-like syntax.1

Within the body of this letrec-syntax, the or macro can thus be
invoked using (or #f x).

A macro transformer is a function that defines how a macro
expands. It takes as argument the syntax object representing the
macro invocation and returns the syntax object to which the macro
call should expand. For example, the macro invocation (or #f x)
causes (or #f x) to be passed as input to the transformer for or.
The transformer then returns a syntax object such as (let ([tmp
#f]) (if tmp tmp (or x))).

Syntax objects are similar to s-expressions, but they have
separate methods for construction and deconstruction. Unlike s-
expressions, which use functions like cons, pair?, car and cdr
to create and examine objects, syntax objects use the pattern match-
ing form syntax-case and the quotation form syntax.

The first argument of syntax-case is the scrutinee and is
matched against the patterns in each clause. The second argument

1 Scheme’s make-variable-transformer and identifier-syntax al-
low macros to be called in other places. As these are orthogonal to hygiene,
we omit them from this paper for the sake of simplicity.

2 1201411.041221

Identifiers i ::= x | y | z | · · ·

Constants c ::= #f | #t | 1 | 2 | · · ·

PatternLiterals lit ::= i

U-Syntax stx ::= i | c | () | (stx . stx)

K-Syntax

ast ::= c Constants

| i Variables

| (lambda (
−→
i)

−→
ast) Functions

| (ast
−→
ast) FunctionApp.

| (if ast ast ast) Conditionals

| (let (
−−−−−→
[i ast])

−→
ast) LocalVariables

| (letrec (
−−−−−→
[i ast])

−→
ast)

| (let-syntax (
−−−−−→
[i ast])

−→
ast) LocalMacros

| (letrec-syntax (
−−−−−→
[i ast])

−→
ast)

| (syntax stx) SyntaxConstr.

| (syntax-case ast (
−→
lit)

−−−−−−→
[pat ast]) SyntaxDeconstr.

| stx UnexpandedCode

| · · ·

Patterns

pat ::= _ WildCard

| () NilConstant

| i PatternVariables

| (pat . pat) Pairs

| · · ·

Figure 2. Syntactic forms

is a list of identifiers that are to be treated as literal constants in
the patterns of the syntax-case. In this paper, pattern literals are
not used, and we use only a subset of the pattern language. How-
ever, the techniques we describe trivially generalize to pattern lit-
erals and the full pattern language. The subset that we use allows a
pattern to be either a wild card that matches anything, the nil con-
stant, a pattern variable or a pair of patterns. As with s-expressions,
nested pairs can be represented using list notation.

The syntax form is a quotation form for syntax objects. As
a notational short-hand, (syntax e) can be written as #’e for
any e just as (quote e) can be written as ’e. In addition, any
pattern variables that are bound by syntax-case are automatically
substituted for the corresponding identifiers in an enclosed syntax.
Any identifiers that are not bound by a pattern are simply constants.
For example, the following evaluates to the syntax object (a 1 z).

(syntax-case #’(1 a) () [(x y) #’(y x z)])

Finally, for simplicity of presentation we do not discuss library
forms, module forms, define or define-syntax. In addition,
we only briefly discuss, in Section 6, how to handle the quote
form and the hygiene “bending” operators datum->syntax and
syntax->datum.

(letrec-syntax ([or
(lambda (stx)

(syntax-case stx ()
[(_) #’#f]
[(_ x) #’x]
[(_ x . xs) #’(let ([tmp x])

(if tmp tmp (or . xs)))]))])
...)

Figure 3. Definition of the or macro

(let ([x #t]) (or #f x))
(let ([x #t]) (or #f x))
(let ([x #t]) (or #f x))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp (or x))))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp (or x))))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp (or x))))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp (or x))))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp (or x))))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp (or x))))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp x)))
(let ([x #t])

(let ([tmp #f]) (if tmp tmp x)))

Figure 4. Example naive expansion of the or macro

4. Hygiene

Before considering how to mathematically define hygiene in Sec-
tion 5, we examine the different sorts of hygiene, how they are vi-
olated and how to handle them algorithmically. To do this we start
with a naive algorithm that uses monatomic identifiers and work
our way up to a fully hygienic algorithm. The resulting algorithmic
techniques are relatively simple, but they provide useful intuitions
about how a hygienic expansion system ought to behave. Later in
Section 5, we use these intuitions to develop mathematically pre-
cise properties that characterize hygiene.

4.1 Types of Hygiene Violations

Hygiene is fundamentally about avoiding unintended variable cap-
ture, and there are two primary ways that can happen. The first is
by a macro introducing binders, and the second is by a macro in-
troducing references. For example, as seen in the following quote,
according to Clinger and Rees (1991) a hygienic macro system is
one in which:

1. It is impossible to write a high-level macro that inserts
a binding that can capture references other than those in-
serted by the macro.

2. It is impossible to write a high-level macro that inserts a
reference that can be captured by bindings other than those
inserted by the macro.

Interestingly, once we mathematically characterize hygiene, we
will discover that there is a third kind of hygiene violation. Specif-
ically, we must ensure that identifiers that act as binders in the in-
put of a macro transformer are not observed by the macro trans-
former other than to compare them to other binders from the same

3 1201411.041221

input. Though this third kind is not often discussed, it is implicitly
averted by traditional hygiene algorithms, and we explore this in
Section 5.6.

4.1.1 Introduced-Binder Hygiene

As an example of introduced-binder hygiene, consider the follow-
ing code.

(let ([tmp #t]) (or #f tmp))

This should evaluate to #t since the first argument to or is #f and
the second argument, tmp, is bound to #t. However, a naive, non-
hygienic expander eventually expands this to the following.

(let ([tmp #t])
(let ([tmp #f]) (if tmp tmp tmp)))

The or macro introduces an inner binding of tmp to #f that shad-
ows the binding of tmp to #t and results in this code evaluating to
#f instead of the expected #t.

4.1.2 Introduced-Reference Hygiene

Hygiene violations due to introduced binders are certainly the most
easily recognized sort of violation. However, violations due to
introduced references can also occur. Consider, for example, the
following variation of the code we had before.

(let ([if #t]) (or #f if))

All we have done is rename tmp to if, so this code should still
evaluate to #t. However, a naive, non-hygienic expander eventually
expands this to the following.

(let ([if #t])
(let ([tmp #f]) (if tmp tmp if)))

Note that if is bound to #t, so (if tmp tmp if) is not the core
form for if as it was before, but rather a function application of
the variable if to the variable references tmp, tmp and if. This is
thus attempting to call #t as a function. Aside from being a runtime
error, it is unlikely to be what the programmer intended.

This time the binding of tmp to #f introduced by the or macro
is not the cause of the problem. Rather, it is the fact that the macro
introduces a reference to if that it expects to be bound to the core
form for if. Since the macro is called in a context in which if is
not bound to the core form, we get an incorrect result.

This problem occurs any time a macro introduces a reference
that it expects to be bound in a particular way. Though this particu-
lar violation occurred due to the rebinding of a core form, this may
happen even in a system with multiple namespaces. For example, a
macro that introduces references to non-core forms such as read or
eval has the same problem if it is called in a context where those
identifiers are rebound.

4.2 Enforcing Hygiene with Binder Renaming

As a first attempt at moving from a naive, non-hygienic macro ex-
pander to a hygienic macro expander, let us consider the introduced
reference problem more carefully. As before, we start with the fol-
lowing code.

(let ([if #t]) (or #f if))

As shown before, in a naive expander, this code eventually expands
to the following.

(let ([if #t])
(let ([tmp #f]) (if tmp tmp if)))

To avoid this problem, we can rename bound variables to freshly
generated identifiers as soon as they are exposed. Thus for example,
after expanding the outer let and before expanding the or macro,
we can generate a fresh identifier such as if1 and replace all
occurrences of if with if1. This results in the following code.

(let ([if1 #t]) (or #f if1))

When this fully expands, we get the following, which has avoided
capturing the if used by the or macro.

(let ([if1 #t])
(let ([tmp #f]) (if tmp tmp if1)))

Note that we do not rename bindings until they are fully expanded
into k-syntax and thus have a known binding structure that cannot
be modified by other macro calls.

4.3 Binder Renaming is Insufficient

Since binder renaming is sufficient to ensure introduced-reference
hygiene, a natural question is whether it is sufficient to ensure
introduced-binder hygiene. Unfortunately, it is not. To see this, con-
sider the following example where we have placed the definition of
the or macro inside the binding of tmp.

(let ([tmp #t])
(letrec-syntax ([or

... #’(let ([tmp ...]) ...) ...])
(or #f tmp)))

For the sake of brevity, we elide most of the or macro except for
the tmp binding introduced by it.

After the outer let form expands and before the body of the
let expands, we generate a fresh identifier for it to bind, and we
rename all tmp references. This results in the following.

(let ([tmp1 #t])
(letrec-syntax ([or

... #’(let ([tmp1 ...]) ...) ...])
(or #f tmp1)))

Note that when tmp is renamed to tmp1, the tmp identifier intro-
duced by the or macro is also renamed. If we continue expansion,
we get the following.

(let ([tmp1 #t])
(letrec-syntax ([or

... #’(let ([tmp1 ...]) ...) ...])
(or #f tmp1)))

If we then expand the call to the or macro, we get the following.

(let ([tmp1 #t])
(letrec-syntax ([or

... #’(let ([tmp1 ...]) ...) ...])
(let ([tmp1 #f])

(if tmp1 tmp1 (or tmp1)))))

At this point, we can see that even though we have been careful
to rename any bindings discovered during the expansion process,
introduced-binder hygiene has been violated. The or macro has
introduced a binding for tmp1 that shadows the outer binding to
tmp1 and incorrectly captures the reference to tmp1 in (or tmp1).
The renaming of tmp1 when the inner let is expanded will not
help us as it will rename all occurrences of tmp1 and not just those
introduced by the or macro.

While we will come back to the use of binder renaming for
ensuring hygiene, this example demonstrates that it does not ensure
introduced-binder hygiene. To find a complete solution for hygiene
we must seek something more.

4 1201411.041221

4.4 Enforcing Hygiene with Gensym

For the moment, we set aside binder renaming and introduced-
reference hygiene to consider hygiene violations due to introduced
binders. This happens for example in Section 4.1.1, where the
binding for tmp that is introduced by the or macro shadows the
locally defined tmp.

The problem is that the introduced tmp happens to coincide
with the tmp being used locally. We can avoid this by using a
freshly generated identifier instead of tmp. Indeed, this is a widely
used technique in systems with non-hygienic macro expanders.
For example, if we have a gensym-identifier operator that
generates fresh identifiers, we could define the or macro as follows.

(letrec-syntax ([or (lambda (stx)
(syntax-case stx ()

[(_) #’#f]
[(_ x) #’x]
[(_ x . xs)

(syntax-case (gensym-identifier #’tmp) ()
[g #’(let ([g x])

(if g g (or . xs)))])]))])
...)

Here we use syntax-case to introduce g as a pattern variable that
gets replaced with the result of gensym-identifier. This ensures
that the binder we introduce is unique and thus never conflicts with
one from the input to the macro.

If we consider the example from Section 4.1.1 with this defini-
tion of or, the expansion proceeds thusly. The code immediately
before expanding the or macro is as follows.

(let ([tmp #t]) (or #f tmp))

When or expands, gensym-identifier creates a fresh identifier,
say tmp1, that is globally unique. The identifier tmp1 does not
conflict with tmp, and thus we avoid the hygiene violation due to
an introduced binder. The fully expanded expression is then the
following.

(let ([tmp #t])
(let ([tmp1 #f]) (if tmp1 tmp1 tmp)))

Unfortunately, while using gensym-identifier allows us to
avoid hygiene violations caused by introduced binders, it provides
no help with introduced references. Consider again the following
example from Section 4.1.2.

(let ([if #t]) (or #f if))

If we use gensym-identifier but not binder renaming, we get
the following when we fully expand the or macro.

(let ([if #t])
(let ([tmp1 #f]) (if tmp1 tmp1 if)))

The binder introduced by the macro uses the freshly generated
identifier tmp1, but that is not the identifier causing the problem. It
is the binding of if that is the problem. That binding is outside the
reach of the or macro, and thus there is nothing the macro can do
to avoid the captured variable. This example demonstrates that, on
its own, using freshly generated identifiers for introduced binders
is not a complete solution to hygiene either.

4.5 Binder Renaming with Gensym is Also Insufficient

Neither the solution in Section 4.2 nor the solution in Section 4.4
is sufficient on its own to ensure hygiene, but they handle comple-
mentary aspects. On the one hand, the solution in Section 4.2 han-
dles introduced-reference hygiene. On the other hand, the solution

in Section 4.4 handles introduced-binder hygiene. Thus we might
consider combining the two. First, we rename identifiers bound
by core forms that are discovered during macro expansion. Then,
we require that any binders introduced by macro transformers be
freshly generated.

Surprisingly, this does not work either. To see why, consider the
question of whether x should be freshly generated by the m macro
in the following code.

(let ([x 3])
(let-syntax ([let-inc ...])

(let-syntax ([m (lambda (stx)
(syntax-case stx ()

[(_ y) #’(let-inc x (* x y))]))])
(m x))))

Suppose let-inc is defined as follows.

(let-syntax ([let-inc (lambda (stx)
(syntax-case stx ()

[(_ u v) #’(let ([u 2]) v)]))])
...)

Whatever is passed to let-inc as u becomes bound. Thus, the
x introduced by m needs to be freshly generated because it is
introducing a new binder. If we do not freshly generate x, then the
expansion sequence would be the following, which results in the
unintended capture of the x originally passed to m by the binding of
x introduced by m.

(m x) (let-inc x (* x x))
(let ([x 2]) (* x x))

On the other hand, freshly generating the x introduced by m avoids
this problem and results in the following expansion sequence where
no unintended capture occurs.

(m x) (let-inc x1 (* x1 x))
(let ([x1 2]) (* x1 x))

While freshly generating x avoids unintended capture in this case,
consider if let-inc were defined as the following.

(let-syntax ([let-inc (lambda (stx)
(syntax-case stx ()

[(_ u v) #’(+ 1 u)]))])
...)

With this definition, let-inc ignores its second argument and is
not a binding form. If we freshly generate x like before, then we
get the following expansion sequence.

(m x) (let-inc x1 (* x1 x)) (+ 1 x1)

This results in an error since x1 is now a variable reference and
there is no x1 in scope. If, on the other hand, we do not freshly
generate x, then we get the following expansion sequence, which
behaves correctly.

(m x) (let-inc x (* x x)) (+ 1 x)

We might still hold out hope that a sufficiently careful programmer
with sufficient information about the binding structure of let-inc
could write macros like m that freshly generate identifiers exactly in
those places where they should. However, that hope is dashed once
we consider a definition of let-inc like the following.

(let-syntax ([let-inc (lambda (stx)
(syntax-case stx ()

[(_ u v) #’(let ([u (+ 1 u)]) v)]))])
...)

5 1201411.041221

Here let-inc expands to both the increment and let binding from
our previous definitions of let-inc. If m does not freshly generate
x, then the expansion sequence is as follows.

(m x) (let-inc x (* x x))
(let ([x (+ 1 x)]) (* x x))

This is wrong as the binding of x in the resulting let improperly
captures the x from the original call to m.

On the other hand, if m does freshly generate x, then the expan-
sion sequence is as follows.

(m x) (let-inc x1 (* x1 x))
(let ([x1 (+ 1 x1)]) (* x1 x))

This is also wrong as there is a reference to the unbound variable
x1 in the right-hand side of the let binding.

With this definition of let-inc, we are stuck. The m macro
must freshly generate the x that it introduces because of the let
binding, but the m macro also must not freshly generate the x that
it introduces because of the reference in the right-hand side of the
let binding.

4.6 Enforcing Hygiene with Diatomic Identifiers

The problem in Section 4.5 is because some uses of x should use
the freshly generated version while others should not. As long as
identifiers are atomic symbols, we cannot have both. In order to
resolve this, we split identifiers into a reference part and a binder
part so they are diatomic instead of monatomic. We thus write
identifiers as <r b> where r is the reference part and b is the binder
part. The reference part is inhabited by a reference atom and is
used if the identifier eventually ends up in a reference position
while the binder part is inhabited by a binder atom and is used to
determine what identifiers are captured when the identifier ends up
in a binding position. These two sorts of atoms are from mutually
disjoint domains, and a binder atom is never used in a position that
expects a reference atom or vice versa. As a simplifying notation,
we write x for <x.r x.b> when the diatomic nature of an identifier
is not significant.

With these diatomic identifiers, m can expand with both non-
freshly generated and freshly generated atoms in the reference and
binder parts of the identifier, respectively. So for example, we could
have the following expansion sequence.

(m <x.r x.b>)
(let-inc <x.r x1.b> (* <x.r x1.b> <x.r x.b>))
(let ([<x.r x1.b> (+ 1 <x.r x1.b>)])

(* <x.r x1.b> <x.r x.b>))

The binder part of the introduced identifier <x.r x1.b> is freshly
generated but the reference part is not. In the right-hand side of the
let binding, we use the reference part of the identifier, x.r, which
was not freshly generated. On the other hand, in the left-hand side
of the let binding, we use the binder part of the identifier, x1.b.
Thus, the let does not capture the identifier in the body of the let
that has x.b as a binder part.

To account for this change, we define expansion to operate with
diatomic identifiers using the small-step relation in Figure 5. This
relation is closed under congruence for k-syntax but not u-syntax.
Thus expansion always operates at an outermost u-syntax. Also,
though it may appear that the third clause (i.e., macro application)
overlaps the other clauses, it does not. Binding forms always use
fresh reference atoms, so r in the third clause never overlaps with
reference-atom constants such as lambda.r in the other clauses.

Under this definition, variable references merely expand to their
reference parts. For example, we have the following expansion.

<x.r x.b> x.r

In effect, the reference part of an identifier represents what the iden-
tifier would refer to if there were no more binding forms discovered
during expansion.

Binding forms are a bit more complicated. When expanding a
binding form, we use the binder part of the identifier to determine
what identifiers it captures. Once that is determined, those identi-
fiers must be modified to refer to the newly expanded binding form.
Since variable references expand to a reference atom, the binding
forms in k-syntax also use reference atoms for their binding posi-
tions. Since the target of a variable reference is determined by the
reference part of an identifier, we replace the reference parts of the
captured identifiers with freshly generated reference atoms that we
then also use in the k-syntax for the binding form. This replacement
is implemented using the subst helper function defined in Figure 6.
Its first clause replaces the reference part of identifiers that have a
particular binder part, and the other clauses are merely a standard
traversal over u-syntax.

Considering lambda again, we have the following expansion
sequence.

(lambda (<x.r x.b>) (<y.r x.b> <x.r z.b>))
(lambda (w.r) (<w.r x.b> <x.r z.b>)) . . .
(lambda (w.r) (w.r x.r))

As with binder renaming, we use w.r, a freshly generated reference
atom for the binding form. The y.r in <y.r x.b> is changed to
w.r since the binder part of that identifier, x.b, matches the binder
part of the identifier, <x.r x.b>, that is in the binding position for
the lambda form. In other words, that identifier should be captured
by the lambda. On the other hand, the identifier <x.r z.b> is left
alone as its binder part does not match x.b.

4.7 Diatomic Identifiers are Sufficient

Returning to the final version of the let-inc macro from Sec-
tion 4.5, we can now see how all of this fits together. First, we start
with the following expression.

(m <x.r x.b>)

When m expands, it freshly generates the binder portion of any
identifiers that it introduces, and we thus get the following.

(let-inc <x.r x1.b> (* <x.r x1.b> <x.r x.b>))

When let-inc expands, the <x.r x1.b> identifier is placed in
both the left-hand and right-hand sides of the let binding, which
results in the following.

(let ([<x.r x1.b> (+ 1 <x.r x1.b>)])
(* <x.r x1.b> <x.r x.b>))

At this point, we expand the let form. This generates a fresh
reference atom x2.r, and we use subst to replace the reference
part of any identifiers in the body that have the same binder part
as the bound identifier. This binder part is x1.b and was freshly
generated by the m macro, so the only identifier captured is the first
argument to *, and we get the following.

(let ([x2.r (+ 1 <x.r x1.b>)])
(* <x2.r x1.b> <x.r x.b>))

We then expand the right-hand side of the let binding. Since the
identifier in it is a variable reference, it expands to its reference part
to produce the following.

(let ([x2.r (+ 1 x.r)])
(* <x2.r x1.b> <x.r x.b>))

6 1201411.041221

c c

<r b> r

(<r b> −−→args) f (<r b> −−→args) where f is the currently in-scope transformer bound to r

and all identifiers introduced by f have freshly generated binder parts

(<lambda.r b0> (
−−−→
<r b>)

−−→
body) (lambda (

−→
r′)

−−−−−−−−−−−−−→
(

subst
−→
b
−→
r′ body

)

)

(<if.r b0> test true false) (if test true false)

(<let.r b0>
−−−−−−−−−→
[<r b> rhs])

−−→
body) (let (

−−−−−−→
[r′ rhs])

−−−−−−−−−−−−−→
(

subst
−→
b
−→
r′ body

)

)

(<letrec.r b0>
−−−−−−−−−→
[<r b> rhs])

−−→
body) (letrec (

−−−−−−−−−−−−−−−−−→
[r′

(

subst
−→
b
−→
r′ rhs

)

])

−−−−−−−−−−−−−→
(

subst
−→
b
−→
r′ body

)

)

(<let-syntax.r b0>
−−−−−−−−−→
[<r b> rhs])

−−→
body) (let-syntax (

−−−−−−→
[r′ rhs])

−−−−−−−−−−−−−→
(

subst
−→
b
−→
r′ body

)

)

(<letrec-syntax.r b0>
−−−−−−−−−→
[<r b> rhs])

−−→
body) (letrec-syntax (

−−−−−−−−−−−−−−−−−→
[r′

(

subst
−→
b
−→
r′ rhs

)

])

−−−−−−−−−−−−−→
(

subst
−→
b
−→
r′ body

)

)

(<syntax.r b0> stx) (syntax stx)

(<syntax-case.r b0> stx lits
−−−−−−−→
[pat rhs]) (syntax-case stx lits

−−−−−−−−−−−−−−−−−−−→
[pat′

(

subst
−→
b
−→
r′ rhs

)

])

where
−→
b is the binder parts of the non-literal identifiers in the

corresponding
−→
pat, and pat′ is pat with each identifier <r b>

replaced by a corresponding element of
−→
r′

(fun −−→args) (fun −−→args) if none of the above cases apply

Figure 5. Macro expansion with diatomic identifiers. In this figure, we let
−→
r′ be fresh reference atoms and subst

−→
b
−→
r′ e be the application

of subst to e for each pair of corresponding elements from
−→
b and

−→
r′ . Closed under congruence for k-syntax.

subst b r <r′ b′> = <r b′> if b = b′

subst b r <r′ b′> = <r′ b′> if b 6= b′

subst b r c = c if c is a constant

subst b r () = ()

subst b r (stx1 . stx2) = (subst b r stx1 . subst b r stx2)

Figure 6. Definition of subst

All the remaining identifiers are references, so the last bit of expan-
sion results in the following.

(let ([x2.r (+ 1 x.r)])
(* x2.r x.r))

Note that identifiers for x that are introduced by m can all capture
each other because they have the same freshly generated binder
parts, but those introduced identifiers cannot capture anything else
as their binder parts are distinct from the binder parts of any other
identifiers.

4.8 Summary

At this point, we have an algorithm that completely handles hy-
giene. We summarize the major points as follows.

First, identifiers are diatomic and contain both a reference part
and a binder part. The reference part represents what the identifier
refers to if it ends up in a reference position. The binder part
represents which identifiers can capture each other.

Second, when expanding a binding form, we use the binder part
of an identifier to determine what identifiers are captured by it. A

freshly generated reference atom is created for the binding form,
and the reference parts of the captured identifiers are then replaced
with this reference atom so that those identifiers now refer to that
binding form.

Finally, we require that the binder parts of any identifiers intro-
duced by a macro call be freshly generated. This ensures that the
only identifiers they can capture are ones that were introduced in
that macro call.

If we go back to the examples of hygiene violation in the or
macro with this algorithm, we get the expansion sequence in Fig-
ure 7, which shows the enforcement of both introduced-reference
hygiene (with the if binding) and introduced-binder hygiene (with
the tmp binding).

5. The Mathematics of Hygiene

The algorithm in Section 4 provides useful intuitions about hygiene
but does not define what hygiene actually is. We now turn to this
question and consider the mathematical properties that characterize
hygiene. We do this in terms of permutations, support and equiv-
ariance from nominal logic (Gabbay and Pitts 2002), so we review
these before turning to the main question of characterizing hygiene.
In the process, we expose observed-binder hygiene as a third way
hygiene can be violated that is not often discussed but is implicitly
averted by traditional hygiene algorithms.

5.1 Nominal Logic

5.1.1 Permutations

In nominal logic, permutations are invertible, total mappings over
atoms. We write (α ↔ β) for the permutation that maps the atoms

7 1201411.041221

(let ([<tmp.r tmp.b> #t])
(let ([<if.r if.b> 2]) (or #f <tmp.r tmp.b>)))

(let ([p.r #t])
(let ([<if.r if.b> 2]) (or #f <p.r tmp.b>)))

(let ([p.r #t])
(let ([<if.r if.b> 2]) (or #f <p.r tmp.b>)))

(let ([p.r #t])
(let ([q.r 2]) (or #f <p.r tmp.b>)))

(let ([p.r #t])
(let ([q.r 2]) (or #f <p.r tmp.b>)))

(let ([p.r #t])
(let ([q.r 2])

(let ([<tmp.r s.b> #f])
(<if.r if.b> <tmp.r s.b>

<tmp.r s.b> (or <p.r tmp.b>)))))
(let ([p.r #t])

(let ([q.r 2])
(let ([t.r #f])

(<if.r if.b> <t.r s.b>
<t.r s.b> (or <p.r tmp.b>)))))

(let ([p.r #t])
(let ([q.r 2])

(let ([t.r #f])
(<if.r if.b> <t.r s.b>

<t.r s.b> (or <p.r tmp.b>)))))
(let ([p.r #t])

(let ([q.r 2])
(let ([t.r #f])

(if <t.r s.b>
<t.r s.b> (or <p.r tmp.b>)))))

(let ([p.r #t])
(let ([q.r 2])

(let ([t.r #f])
(if t.r <t.r s.b> (or <p.r tmp.b>)))))

(let ([p.r #t])
(let ([q.r 2])

(let ([t.r #f])
(if t.r t.r (or <p.r tmp.b>)))))

(let ([p.r #t])
(let ([q.r 2])

(let ([t.r #f]) (if t.r t.r <p.r tmp.b>))))
(let ([p.r #t])

(let ([q.r 2])
(let ([t.r #f]) (if t.r t.r p.r))))

Figure 7. Example hygienic expansion of the or macro

α and β to each other while leaving all other atoms unchanged and

(~α ↔ ~β) for the permutation that maps corresponding elements of

~α and ~β to each other while leaving all other atoms unchanged. We
write the application of a permutation π to an atom α as π • α.
Finally, since every permutation is invertible, we write π−1 for
the inverse of π. We lift these permutations from applying over
individual atoms to applying over both k-syntax and u-syntax by
a straightforward homomorphism as shown in Figure 8. Note that
we apply the permutation even to bound variables. If we do not,
the permutation could result in unintended captures. For example,
consider the permutation (α ↔ β) applied to the term (lambda
(α) β). If we do not permute the variable binding, α, then we
cannot permute the body, β, without causing unintended variable
capture.

Finally, nominal logic lifts permutations to apply to functions. If
we let ◦ compose permutations with functions, then the application
of a permutation π to a function f is defined by the equation
π • f = π ◦ f ◦ π−1. To see the intuition behind this, consider

Identifiers andConstants

π • <r b> = <π • r π • b>

π • c = c

U-Syntax

π • i = π • i

π • c = π • c

π • () = ()

π • (stx1 . stx2) = (π • stx1 . π • stx2)

K-Syntax

π • (lambda (
−→
i)

−−→
body) = (lambda (

−−→
π • i)

−−−−−→
π • body)

π • (fun −−→args) = (π • fun −−−−−→π • args)

π • (if test true false)

= (if π • test π • true π • false)

π • (let (
−−−−−→
[i rhs])

−−→
body)

= (let (
−−−−−−−−−−→
[π • i π • rhs])

−−−−−→
π • body)

π • (letrec (
−−−−−→
[i rhs])

−−→
body)

= (letrec (
−−−−−−−−−−→
[π • i π • rhs])

−−−−−→
π • body)

π • (let-syntax (
−−−−−→
[i rhs])

−−→
body)

= (let-syntax (
−−−−−−−−−−→
[π • i π • rhs])

−−−−−→
π • body)

π • (letrec-syntax (
−−−−−→
[i rhs])

−−→
body)

= (letrec-syntax (
−−−−−−−−−−→
[π • i π • rhs])

−−−−−→
π • body)

π • (syntax stx) = (syntax π • stx)

π • (syntax-case ast lits
−−−−−−−→
[pat rhs])

= (syntax-case π • ast π • lits
−−−−−−−−−−−−→
[π • pat π • rhs])

Patterns

π • _ = _

π • () = ()

π • (pat1 . pat2) = (π • pat1 . π • pat2)

Figure 8. Lifted permutation application

if we have the intentional representation of f . Applying π to f
should apply π to all the atoms in the implementation of f . Thus,
if f always returns some constant c, then π • f should return π • c.
We achieve this effect by applying π to the output of f . However,
we have to be careful about inputs to f that end up in the output.
For example, if f is the identity function, then f contains no atoms
and applying π to f should not change it. Applying π to the output
of f would incorrectly rename elements of the input that end up in
the output. We counteract this by applying π−1 to the input. Any
inputs that end up in the output will have the π canceled out by the
π−1 and thus be unchanged.

5.1.2 Support

From this notion of permutation, nominal logic defines the concept
of the support of an object. Intuitively, the support of an object is
the set of atoms that “occur free” in it. It is usually defined over a
quotiented domain that equates alpha equivalent terms, but for the
sake of clarity we make uses of alpha equivalence explicit. If ≃ is

8 1201411.041221

(lambda (
−→
i)

−−→
body) ≃ (lambda (

−→
i′)

−−−→
body′

) if ∀∞
−→
i′′ .

−−−−−−−−−−−−−→

body
−→
i ,

−→

i′ ,
−→

i′′

≃ body′

(let (
−−−−−→
[i rhs])

−−→
body) ≃ (let (

−−−−−−→
[i′ rhs′])

−−−→
body′

) if
−−−−−−−→
rhs ≃ rhs′ and ∀∞

−→
i′′ .

−−−−−−−−−−−−−→

body
−→
i ,

−→

i′ ,
−→

i′′

≃ body′

(letrec (
−−−−−→
[i rhs])

−−→
body) ≃ (letrec (

−−−−−−→
[i′ rhs′])

−−−→
body′

) if ∀∞
−→
i′′ .

−−−−−−−−−−−→

rhs
−→
i ,

−→

i′ ,
−→

i′′

≃ rhs′ and

−−−−−−−−−−−−−→

body
−→
i ,

−→

i′ ,
−→

i′′

≃ body′

(let-syntax (
−−−−−→
[i rhs])

−−→
body) ≃ (let-syntax (

−−−−−−→
[i′ rhs′])

−−−→
body′

) if
−−−−−−−→
rhs ≃ rhs′ and ∀∞

−→
i′′ .

−−−−−−−−−−−−−→

body
−→
i ,

−→

i′ ,
−→

i′′

≃ body′

(letrec-syntax (
−−−−−→
[i rhs])

−−→
body) ≃ (letrec-syntax (

−−−−−−→
[i′ rhs′])

−−−→
body′

) if ∀∞
−→
i′′ .

−−−−−−−−−−−→

rhs
−→
i ,

−→

i′ ,
−→

i′′

≃ rhs′ and

−−−−−−−−−−−−−→

body
−→
i ,

−→

i′ ,
−→

i′′

≃ body′

(syntax-case s (
−→
l)

−−−−−−−→
[pat rhs]) ≃ (syntax-case s′ (

−→
l′)

−−−−−−−−→
[pat′ rhs′]) if s ≃ s′ and

−→
l ≃

−→
l′ and

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∀∞
−→
i′′ . pat

−→
i ,

−→

i′ ,
−→

i′′

≃ pat′ and rhs
−→
i ,

−→

i′ ,
−→

i′′

≃ rhs′

where i and i′ are the non-literal identifiers

in the corresponding pat and pat′, respectively

Figure 9. Alpha equivalence for k-syntax. We write t1

−→
i ,

−→

i′ ,
−→

i′′

≃ t2 as an abbreviation for
(−→
i ↔

−→
i′′
)

• t1 ≃
(−→
i′ ↔

−→
i′′
)

• t2 and use ∀∞

for “for all but finitely many”. Closed under reflexivity, symmetry, transitivity and congruence.

the alpha equivalence relation, the support of a term t is the smallest
finite set, supp t, such that the following holds.

∀α, β /∈ supp t. (α ↔ β) • t ≃ t

As an example of this, consider the term (lambda (α) (α
β)). Swapping the atom α with any atom other than β results in
an alpha-equivalent term. Thus α is not in the support of that term.
On the other hand, any atom that we swap with β results in a non-
alpha-equivalent term. Thus β is in the support of that term.

5.1.3 Equivariance

Finally, nominal logic defines equivariance as holding for a func-
tion iff its support is empty. Thus, f is equivariant iff any of the
following equivalent equations hold, where alpha equivalence over
functions is interpreted extensionally (i.e., they take alpha equiva-
lent terms to alpha equivalent terms).

supp f = ∅

⇔ ∀π.π • f ≃ f

⇔ ∀π.π ◦ f ◦ π−1 ≃ f

⇔ ∀π.π ◦ f ≃ f ◦ π

5.2 Alpha Equivalence

As already mentioned, hygiene is essentially lexical scoping at the
macro level. Thus it would be natural to characterize hygiene by re-
quiring alpha-equivalent terms to expand to alpha-equivalent terms.
However, since macro transformers can be any Turing computable
function, we cannot in general know the binding structure of u-
syntax and thus cannot define a non-trivial alpha-equivalence re-
lation over them. For example, we may have a macro that uses a
complicated function of its input to determine whether or not to
expand to a let. As another example, even a simple let may not
actually be a binding form if it is nested in some other macro call
as the outer macro may rearrange the u-syntax so the let becomes
some other form.

Fortunately, while we cannot know the binding structure of u-
syntax, we know the binding structure of the parts of the code

already expanded into k-syntax. For example, after one step of
expansion, the example in Section 4.2 becomes the following.

(let ([if.r #t]) (or #f <if.r if.b>))

Now that the let form has expanded into k-syntax, it cannot ex-
pand further, and its binding structure is fixed. We do not know the
binding structure of its body, though, because the body is u-syntax
that may be further expanded.

Nevertheless, we can use a weakened notion of alpha equiva-
lence that accounts for the binding structure manifest in k-syntax
but assumes no non-trivial equivalences in u-syntax. This weak-
ened notion of alpha equivalence is a conservative approximation
of whatever the actual binding structure may be and is sufficient to
formally define when hygiene violations occur due to introduced
references. In Figure 9 we formally define this alpha equivalence.
It is entirely standard and behaves as usual for alpha equivalence
except that it has no equivalences for u-syntax other than reflex-
ivity. For example, the above expression is alpha equivalent to the
following.

(let ([x.r #t]) (or #f <x.r if.b>))

If these two expressions do not expand to alpha-equivalent expres-
sions, then introduced-reference hygiene is violated. We formally
define this as follows.

Criterion 1 (Reference Hygiene). A macro expansion step is
hygienic with regard to references iff for any partially expanded
expressions e1, e2 and e′1 where e1 ≃ e2 and e1 e′1, there
exists an e′2 such that e′1 ≃ e′2 and e2 e′2. A macro system is
hygienic with regard to references iff all its expansion steps are
hygienic with regard to references.

Since this criterion is independent of the details of the expansion
algorithm, we are free to choose from any of the well-known meth-
ods for manipulating terms while respecting alpha equivalence. In
Section 4.2, we ensured this property by always freshly generat-
ing bound reference atoms, but we can also use the binding forms
provided by nominal logic.

9 1201411.041221

Expansion

(<fresh.r b0> (
−→
b) body) (fresh (

−→
b) body)

Permutation

π • (fresh (
−→
b) body) = (fresh (

−−→
π • b) π • body)

Alpha Equivalence

(fresh (
−→
b) body) ≃ (fresh (

−→
b′) body′

)

if ∀∞
−→
b′′. body

−→
b ,

−→

b′ ,
−→

b′′

≃ body′

(fresh () body) ≃ body

(fresh (
−→
b) body) ≃ (fresh (

−→
b ∪

−→
b0) body)

if b0 ∩ supp body = ∅

Figure 10. Definitions of expansion, permutation and alpha
equivalence for fresh

Note that, just like binder renaming, the Reference Hygiene Cri-
terion ensures reference hygiene but not binder hygiene. This is due
to the fact that we do not know the binding structure of u-syntax and
thus have no non-trivial equivalences for it. Tackling that problem
is the subject of the remainder of this section.

5.3 Fresh Identifiers

As a first step toward handling binder hygiene, recall that the algo-
rithm in Section 4.4 requires that macros freshly generate the binder
atoms in any identifiers they introduce. In order to mathematically
model this, we introduce a scoping construct for binder atoms. We

write this as (fresh (~b) body) where the binder atoms in ~b are

introduced into the scope of body. Duplicates are not allowed in ~b

and order is irrelevant, so we treat~b as a set.
In Figure 10 we define expansion, permutation and alpha equiv-

alence for this form. In addition to the usual alpha equivalences,
we may omit atoms bound by fresh that are not in the support of
its body, and if fresh does not bind any atoms, we can replace it
with just its body. We include these equivalences because the sole

purpose of fresh is to bring the elements of~b into the scope of its
body. If they are not used, then we do not need fresh to bring them
into scope. Just as with other binding constructs, operations such as
substitution must rename the binders in fresh to avoid unintended
capture.

Now instead of using gensym-identifier, we make macros
return a fresh wrapped around a syntax object. For example, the
or macro expands as follows.

(or #f <tmp.r tmp.b>)
(fresh (tmp1.b)

(let ([<tmp.r tmp1.b> #f])
(if <tmp.r tmp1.b>

<tmp.r tmp1.b> <tmp.r tmp.b>)))

This is identical to when we used gensym-identifier except that
tmp1.b now comes from a locally declared scope instead of being
a global gensym.

5.4 Equivariance

A macro transformer should use fresh for any introduced binder
atoms, but in order to formally require this, we need to define what
counts as an introduced binder atom. For example, if a transformer
returns <x.r y.b> when passed <x.r x.b> as input, clearly y.b
was introduced by the macro and should be included in the atoms
scoped by fresh. However, what if a macro returns <x.r x.b>

when passed <x.r x.b> as input? The macro transformer might
be the identity function. In that case, x.b is not introduced by the
macro as it comes from the input. On the other hand, the macro
transformer could be the constant function that always returns <x.r
x.b>. In that case, x.b is introduced by the macro. We just happen
to have chosen an input that coincides with the output.

In order to handle this, note that the binder atoms introduced
by a transformer are in its support. Thus we can force macro
transformers to use fresh for introduced binder atoms by requir-
ing that their supports contain no binder atoms. In other words,
we require that macro transformers be equivariant with respect to
binder atoms. This allows us to distinguish between transform-
ers that return <x.r x.b> when passed <x.r x.b> because they
are an identity function and those that do so because they are a
constant function. In the former case, applying the permutation
(x.b ↔ y.b) to the function before applying it to <x.r x.b> re-
sults in the following.

((x.b ↔ y.b) • f) <x.r x.b>

= ((x.b ↔ y.b) ◦ f ◦ (y.b ↔ x.b)) <x.r x.b>

= (x.b ↔ y.b) • (f ((y.b ↔ x.b) • <x.r x.b>))

= (x.b ↔ y.b) •
(

f <x.r y.b>
)

= (x.b ↔ y.b) • <x.r y.b>)

= <x.r x.b>

On the other hand, doing the same on a constant function results in
the following.

((x.b ↔ y.b) • f) <x.r x.b>

= ((x.b ↔ y.b) ◦ f ◦ (y.b ↔ x.b)) <x.r x.b>

= (x.b ↔ y.b) • (f ((y.b ↔ x.b) • <x.r x.b>))

= (x.b ↔ y.b) •
(

f <x.r y.b>
)

= (x.b ↔ y.b) • <x.r x.b>

= <x.r y.b>

In the former case, the transformer function is equivariant with
respect to binder atoms, and applying the permutation does not
change the output. In the latter case, however, the transformer is
not equivariant, and the permutation changes the output.

If a transformer needs to introduce a binder atom, as is the case
with tmp in the or macro, then in order to remain equivariant, it
must use fresh. For example, instead of returning the constant
<x.r x.b>, we can have f return (fresh (x.b) <x.r x.b>).
In that case, modulo alpha equivalence, applying the permutation
to f does not change it. This is seen in the following.

((x.b ↔ y.b) • f) <x.r x.b>

= ((x.b ↔ y.b) ◦ f ◦ (y.b ↔ x.b)) <x.r x.b>

= (x.b ↔ y.b) • (f ((y.b ↔ x.b) • <x.r x.b>))

= (x.b ↔ y.b) •
(

f <x.r y.b>
)

= (x.b ↔ y.b) • (fresh (x.b) <x.r x.b>)

= (fresh (y.b) <x.r y.b>)

≃ (fresh (x.b) <x.r x.b>)

This then gives rise to the following criterion defining hygiene with
respect to binders.

Criterion 2 (Binder Hygiene). A macro transformer is hygienic
with respect to binders iff it is equivariant with respect to binder
atoms. A macro system is hygienic with respect to binders if all
its transformers are hygienic with respect to binders.

10 1201411.041221

5.5 Automating Hygiene

While the Binder Hygiene Criterion provides a formal description
of hygiene with respect to binders, it still places the burden of
ensuring hygiene on the macro author. While a mechanical proof
checker or a type system like in Herman and Wand (2008) or Her-
man (2010) could verify that a particular transformer is equivariant,
we can also have the macro system automatically enforce binder
hygiene. A simple way to do this is to use fresh to capture any
binder atoms in the support of a transformer. Thus we have the fol-
lowing definition where suppb f is the support of f with respect to
binder atoms.

Definition 3 (Automated Hygiene). Given a transformer f , let the
hygienic version of that transformer be the following.

hyg f = (fresh (suppb f) f)

Effectively this assumes f is supposed to be equivariant and uses
fresh to clean up any binder atoms that the macro author left in
the support of f .

In order to apply the result of hyg to an argument, we lift fresh
to be a function where application of fresh is as follows.

Definition 4 (Fresh Application). If s ∩ suppb x = ∅, then

(fresh (s) f)x = (fresh (s) (f x))

When s and the support of x are not disjoint, we use alpha-
equivalence to rename s to not conflict with x before applying
this definition.

This definition trivially ensures the equivariance of hyg as
shown in the following theorem.

Theorem 5 (Equivariance of Automated Hygiene). For any f with
a finite support with respect to binder atoms, hyg f is equivariant
with respect to binder atoms.

Proof. Trivial. The hyg operator produces a fresh that captures
the binder atoms in the support of f , and thus the support of hyg f
is empty.

If the macro system applies hyg to all macro transformers, then
all macros are automatically hygienic. For example, consider again
the macro that returns the constant <x.r x.b>. The support of this
with respect to binder atoms is the singleton containing x.b. If
we apply hyg to this, we get (fresh (x.b) f). Applying this
to <x.r x.b> then results in the following.

(fresh (x.b) f) <x.r x.b> ≃
(fresh (x1.b) (x.b ↔ x1.b) • f) <x.r x.b> =
(fresh (x1.b) (((x.b ↔ x1.b) • f) <x.r x.b>)) =
(fresh (x1.b) (x.b ↔ x1.b) • <x.r x.b>) =
(fresh (x1.b) <x.r x1.b>)

Of course, computing the support of a function is undecidable in
general. To get a practical implementation, we can instead use the
following definition.

Definition 6 (Automated Hygiene, Alternative). Given a trans-
former f and a syntax object x, where π is some minimal per-
mutation mapping each element of suppb x to an atom not in the
support of f or x, let the application of the hygienic version of that
transformer be as follows.

(hyg f) x =

(fresh (suppb ((π • f) x)− suppb x) ((π • f) x))

Since we can easily compute the support of a syntax object,
this definition is practical to implement but behaves the same as
Definition 3 as shown in the following theorem.

Theorem 7 (Equivalance of Automated Hygiene Definitions). Def-
inition 3 and Definition 6 are equivalent definitions of hyg up to
alpha equivalence.

Proof. Let s1 = suppb f − suppb x, s2 = suppb f ∩ suppb x and
s3 = suppb x − suppb f . Also let π be defined as in Definition 6.
Finally, let v = suppb ((π • f) x). Note that π • s1, π • s2,
s2 and s3 are all disjoint and v ⊆ suppb (π • f) ∪ suppb x =
π • s1 ∪ π • s2 ∪ s2 ∪ s3. We then have the following equalities.

(fresh (suppb f) f)x

= (fresh (s1 ∪ s2) f)x

≃ (fresh (π • (s1 ∪ s2)) π • f)x

= (fresh (π • (s1 ∪ s2)) ((π • f) x))

= (fresh ((π • s1) ∪ (π • s2)) ((π • f) x))

≃ (fresh (v ∩ (π • s1 ∪ π • s2)) ((π • f) x))

= (fresh (v − (s2 ∪ s3)) ((π • f) x))

= (fresh (suppb ((π • f) x)− suppb x) ((π • f) x))

Note that different choices of π in Definition 6 may result in
different results, but as a corollary of Theorem 7 those results are
all alpha equivalent to each other.

5.6 Observed-Binder Hygiene

Alert readers may notice that the Binder Hygiene Criterion affects
not just binder atoms introduced by transformers but also binder
atoms observed by macro transformers. For example, consider the
following macro transformer where bound-identifier=? ex-
tracts the binder atoms from two identifiers and tests if they are
equal.

(let-syntax ([obs (lambda (stx)
(if (bound-identifier=? stx #’<x.r x.b>)

#’1 #’2))])
...)

In a naive expansion system, if the input to this transformer is <x.r
x.b>, then the output is 1. However, if we apply the permutation
(x.b ↔ y.b) to the transformer, then the result is the following.

((x.b ↔ y.b) • obs) <x.r x.b>

= ((x.b ↔ y.b) ◦ obs ◦ (y.b ↔ x.b)) <x.r x.b>

= (x.b ↔ y.b) • (obs ((y.b ↔ x.b) • <x.r x.b>))

= (x.b ↔ y.b) •
(

obs <x.r y.b>
)

= (x.b ↔ y.b) • 2

= 2

This function does not introduce any atoms. Nevertheless, it does
observe a binder atom in the input. Thus, permuting it changes
its output, and it is not equivariant. This is not just an artifact of
how we have mathematically defined hygiene but is a distinction
present in many hygiene algorithms. Indeed, if obs were to take
the identifier constant that it is comparing against the input and in-
troduce it into its output, then respecting introduced-binder hygiene
requires that it not bind over any identifiers from the input. Thus,
those identifiers should not be equal when they are observed by
bound-identifier=?. To achieve this, we must keep the atoms
in the input distinct from any atoms internal to the transformer and
thus enforce observed-binder hygiene. This is not as well known as
introduced-binder and reference hygiene but is just as important.

11 1201411.041221

5.7 Summary

At this point, we now have a mathematical definition of hygiene
and can summarize the main points as follows.

First, we assume identifiers are diatomic as in Section 4.6.
Second, in order to enforce reference hygiene, we require that

the Reference Hygiene Criterion holds. In other words, we require
that expansion steps respect alpha equivalences over already ex-
posed binding forms in the k-syntax portion of the code.

Third, introduced binder atoms are noted by their presence in
the support of a transformer.

Fourth, we require that the Binder Hygiene Criterion hold in
order to force transformers to be equivariant with respect to binder
atoms and thus enforce binder hygiene. When macros introduce a
binder atom, they must thus use fresh so they remain equivariant.

Finally, we can automatically make transformers be equivariant
by using the hyg operator as defined in Definition 3 or Definition 6.

6. Hygiene and syntax-case

The definition of hygiene in Section 5 has a close correspon-
dence to the syntax-case algorithm described by Dybvig et al.
(1993). While a detailed explanation of syntax-case is beyond
the scope of this paper, we highlight a few of the parallels. In the
syntax-case algorithm, wraps are used to annotate syntax ob-
jects with binding information. There are two different algorithms
described by Dybvig et al. (1993) for applying these wraps. In one,
wraps may be suspended in the middle of applying to a syntax
object and are lazily applied to descendant syntax objects. In the
other, wraps are eagerly applied and always descend syntax objects
until they reach individual identifiers. These two models are seman-
tically equivalent. The former is asymptotically more efficient, but
the latter is simpler and more directly corresponds to our definition
of hygiene.

In the eager version of the syntax-case algorithm, wraps are
a sequence of marks and substitutions surrounding a base symbol
for an identifier. Marks are atomic, and substitutions map a set of
marks and a particular symbol to a label, which is also atomic.

New marks are added to the wrap of an identifier during the
macro expansion process. A fresh mark, along with its inverse,
called an anti-mark, is created each time a macro is called. The
anti-mark is placed on the identifiers in the input of the macro
transformer while the mark is placed on the output of the macro
transformer. When a mark is placed on an identifier that has the cor-
responding anti-mark, they cancel each other out. Identifiers with
different marks are considered to be not bound-identifer=?. The
behavior of marks in this regard mirrors the behavior of the permu-
tation π in Definition 6. The difference is that a mark is essentially
an abstract permutation that we treat opaquely without knowing
how it maps atoms.

When a binding form expands, a new label is chosen for the
binding, and a substitution is created that maps the marks and
symbol of the identifier in the binding position to the new label.
This substitution is added to the wraps of any identifiers in the body.
When an identifier expands in a reference position, the substitutions
are consulted to determine to what label it is bound. This models
the behavior of how binding forms are expanded in Section 4.6.
The freshly generated reference atom corresponds to the new label.
The subst operator corresponds to the creation of a substitution.

Finally, note that the operators bound-identifier=? and
free-identifier=? in syntax-case are equivalent to compar-
ing the reference and binder parts, respectively, of the diatomic
identifiers described in Section 4.6.

In all these regards, the syntax-case algorithm corresponds to
an almost direct implementation of the mathematical principles in
Section 5. The major difference is that syntax-case treats per-

mutations as opaque symbolic objects (i.e., marks) and the op-
erations on identifiers are stored in reified forms (i.e., the marks
and substitutions in a wrap). This allows operators such as quote,
syntax->datum and datum->syntax that “bend” hygiene and ei-
ther strip wraps from identifiers or transplant the wrap of an identi-
fier to a new symbol. The mathematics in Section 5 can also support
these operations if we generalize it to treat permutations as opaque
objects and keep subst reified.

7. Related Work

Kohlbecker et al. (1986) defined a hygienic macro expansion algo-
rithm by marking identifiers with time stamps indicating the macro
expansion step in which they were introduced. However, their defi-
nition of hygiene encompasses only introduced-binder hygiene and
not introduced-reference hygiene.

Bawden and Rees (1988) then proposed using syntactic closures
to handle hygiene. They define hygiene to include both introduced-
binder and introduced-reference hygiene. With syntactic closures,
macros take syntactic environments as arguments and return ex-
pressions that have been closed over particular environments. These
environments are then used when interpreting identifiers in those
expressions. Clinger (1991) takes a different approach and passes
functions for explicitly renaming and comparing identifiers to each
macro transformer. In both these systems, macro authors must be
careful to correctly use the tools provided for ensuring hygiene as
they may otherwise end up with non-hygienic macros.

Clinger and Rees (1991) combined the pattern matching lan-
guage of Kohlbecker and Wand (1987) with the ideas from Bawden
and Rees (1988) to create a system that lets users write high-level
macros that are automatically hygienic. Finally, the syntax-case
algorithm (Dybvig et al. 1993; Dybvig 2007) extended this by al-
lowing macro transformers to be arbitrary functions and providing
mechanisms for “bending” the rules of hygiene. The system spec-
ified by the R6RS Scheme standard (Sperber et al. 2007, 2009) is
based on this along with extensions for interlibrary macros.

These systems all focus on the algorithmic implementation of
hygiene and define hygiene only informally or by way of a par-
ticular algorithm. However, the Reference Hygiene Criterion and
the Binder Hygiene Criterion are broadly applicable, and we can
consider how they apply to these systems. Kohlbecker et al. (1986)
satisfies the Binder Hygiene Criterion but not the Reference Hy-
giene Criterion, which reflects the fact that they are concerned only
with binder hygiene. Bawden and Rees (1988) and Clinger (1991)
provide the tools for macro authors to satisfy both the Reference
Hygiene Criterion and the Binder Hygiene Criterion but do not
enforce them. Nevertheless, whether a macro author has used the
tools correctly can be determined by whether these criteria are re-
spected by the transformer. Clinger and Rees (1991) and Dybvig
et al. (1993) automatically satisfy the Reference Hygiene Criterion
and the Binder Hygiene Criterion except when hygiene “bending”
operators are used.

A number of systems (Ganz et al. 2001; Culpepper and Felleisen
2003, 2004; Herman and Wand 2008; Herman 2010) use shape
types or some other typing discipline to enforce hygiene. These sys-
tems generally annotate macros with types that specify their bind-
ing structures and enforce the Reference Hygiene Criterion and the
Binder Hygiene Criterion as a consequence of typeability. Several
of them directly connect their notions of hygiene to nominal logic,
albeit in a typed setting. However, these type systems reject many
otherwise well-formed, hygienic macros and do not consider hy-
giene in a general setting without a type system or when not all
binding structures are known in advance.

The definition of hygiene that we propose is not only useful
for determining whether a particular macro system is hygienic, but
also provides a useful perspective on extensions to hygiene that

12 1201411.041221

have been proposed. For example, van Tonder (2005) gives ex-
amples of macros that use local functions to manipulate the syn-
tax. Since the usual hygiene algorithms do not distinguish between
identifiers introduced by different functions within the same macro
expansion step, these helper functions may unintentionally capture
identifiers introduced by each other. This is easily solved by expos-
ing the hyg operator to macro authors so they can annotate these
functions as needing to introduce distinct identifiers. Similar tech-
niques can be used with the local transformations in Culpepper
and Felleisen (2010) and Culpepper (2012). Another example is
anaphoric macros (Barzilay et al. 2011). The classic case of this is
a loop macro that binds break to a continuation that breaks out
of the loop. This binding is introduced by the macro but should be
visible to the loop body written by the macro user. We conjecture
that this can be handled by allowing macros to specify that they
have a non-empty support. For example, loop would specify that
break is in its support.

8. Conclusion

Hygiene is an essential aspect of the Scheme macro system. There
have been multiple implementations of it over the years, but no
general, formal definition of what it is. Existing definitions are
either informal, tied to a particular expansion algorithm or consider
only a restricted subset of macros that follow a certain typing
discipline. In this paper we examine several examples of hygiene
and how it is violated in naive expanders. From these examples, we
then develop a simple expansion algorithm that preserves hygiene.
Based on the intuitions developed with that algorithm, we then
construct a mathematically precise, formal definition of hygiene.
This definition connects hygiene to nominal logic and shows that
hygiene is a combination of alpha equivalence and equivariance. It
is algorithm independent and can be used to test whether a proposed
algorithm is hygienic. This definition closely corresponds to several
existing algorithms, and in particular, the syntax-case algorithm
closely parallels how one would naturally write an algorithm to
satisfy this definition.

Acknowledgments

Thanks go to Mitchell Wand, William Byrd, R. Kent Dybvig, J. Ian
Johnson, Michael Ballantyne, Celeste Hollenbeck and the anony-
mous reviewers for their comments, suggestions and help in im-
proving this paper.

This material is based upon work supported in part by NSF
Grant CCF 13-18191. Any opinions, findings, conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

This article reports on work supported by the Defense Ad-
vanced Research Projects Agency under agreement no. FA8750-
10-2-0233. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense
or the U.S. Government.

References

Eli Barzilay, Ryan Culpepper, and Matthew Flatt. Keeping it clean with
syntax parameters. In Proceedings of the Twelfth Workshop on Scheme

and Functional Programming, October 2011.

Alan Bawden and Jonathan Rees. Syntactic closures. In Proceedings of the

1988 ACM Conference on LISP and Functional Programming, LFP ’88,
pages 86–95, New York, NY, USA, 1988. ACM. ISBN 0-89791-273-X.
doi: 10.1145/62678.62687.

William Clinger. Hygienic macros through explicit renaming. ACM SIG-

PLAN Lisp Pointers, IV(4):25–28, October 1991. ISSN 1045-3563. doi:
10.1145/1317265.1317269.

William Clinger and Jonathan Rees. Macros that work. In Proceedings

of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’91, pages 155–162, New York, NY, USA,
1991. ACM. ISBN 0-89791-419-8. doi: 10.1145/99583.99607.

Ryan Culpepper. Fortifying macros. Journal of Functional Programming,
22(Special Issue 4–5):439–476, September 2012. ISSN 1469-7653. doi:
10.1017/S0956796812000275.

Ryan Culpepper and Matthias Felleisen. Well-shaped macros. In Proceed-

ings of the Fourth Workshop on Scheme and Functional Programming,
pages 59–68, November 2003.

Ryan Culpepper and Matthias Felleisen. Taming macros. In Gabor Karsai
and Eelco Visser, editors, Generative Programming and Component

Engineering, volume 3286 of Lecture Notes in Computer Science, pages
225–243. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-23580-4.
doi: 10.1007/978-3-540-30175-2_12.

Ryan Culpepper and Matthias Felleisen. Fortifying macros. In Proceedings

of the 15th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’10, pages 235–246, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-794-3. doi: 10.1145/1863543.1863577.

R. Kent Dybvig. Syntactic abstraction: The syntax-case expander. In
Andy Oram and Greg Wilson, editors, Beautiful Code: Leading Pro-

grammers Explain How They Think, Theory in Practice, chapter 25.
O’Reilly Media, July 2007. ISBN 978-0-596-51004-6.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction
in Scheme. LISP and Symbolic Computation, 5(4):295–326, December
1993. ISSN 0892-4635 (Print) 1573-0557 (Online). doi: 10.1007/
BF01806308.

Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing, 13(3–5):
341–363, July 2002. ISSN 0934-5043 (Print) 1433-299X (Online). doi:
10.1007/s001650200016.

Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage
computations: type-safe, generative, binding macros in MacroML. In
Proceedings of the Sixth ACM SIGPLAN International Conference on

Functional Programming, ICFP ’01, pages 74–85, New York, NY, USA,
2001. ACM. ISBN 1-58113-415-0. doi: 10.1145/507635.507646.

David Herman. A Theory of Typed Hygienic Macros. PhD thesis, North-
eastern University, Boston, MA, USA, May 2010.

David Herman and Mitchell Wand. A theory of hygienic macros. In Sophia
Drossopoulou, editor, Programming Languages and Systems, volume
4960 of Lecture Notes in Computer Science, pages 48–62. Springer
Berlin Heidelberg, 2008. ISBN 978-3-540-78738-9. doi: 10.1007/
978-3-540-78739-6_4.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. In Proceedings of the 1986 ACM

Conference on LISP and Functional Programming, LFP ’86, pages 151–
161, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4. doi:
10.1145/319838.319859.

Eugene E. Kohlbecker and Mitchell Wand. Macro-by-example: Deriving
syntactic transformations from their specifications. In Proceedings of

the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, POPL ’87, pages 77–84, New York, NY, USA, 1987.
ACM. ISBN 0-89791-215-2. doi: 10.1145/41625.41632.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van
Straaten (eds.). Revised6 report on the algorithmic language Scheme,
September 2007. URL http://www.r6rs.org/.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten,
Robby Findler, and Jacob Matthews. Revised6 report on the algo-
rithmic language Scheme. Journal of Functional Programming, 19
(Supplement S1):1–301, August 2009. ISSN 1469-7653. doi: 10.1017/
S0956796809990074.

André van Tonder. SRFI-72: Hygienic macros, September 2005. URL
http://srfi.schemers.org/srfi-72/srfi-72.html.

13 1201411.041221

http://www.r6rs.org/
http://srfi.schemers.org/srfi-72/srfi-72.html

	Introduction
	Overview of the Main Ideas
	Basics of Scheme Macros
	Hygiene
	Types of Hygiene Violations
	Introduced-Binder Hygiene
	Introduced-Reference Hygiene

	Enforcing Hygiene with Binder Renaming
	Binder Renaming is Insufficient
	Enforcing Hygiene with Gensym
	Binder Renaming with Gensym is Also Insufficient
	Enforcing Hygiene with Diatomic Identifiers
	Diatomic Identifiers are Sufficient
	Summary

	The Mathematics of Hygiene
	Nominal Logic
	Permutations
	Support
	Equivariance

	Alpha Equivalence
	Fresh Identifiers
	Equivariance
	Automating Hygiene
	Observed-Binder Hygiene
	Summary

	Hygiene and syntax-case
	Related Work
	Conclusion
	References

