
Indentation-Sensitive Parsing for Parsec

Michael D. Adams

University of Illinois at Urbana/Champaign

http://michaeldadams.org/

Ömer S. Ağacan

TOBB University of Economics and Technology

http://osa1.net/

Abstract

Several popular languages including Haskell and Python use the
indentation and layout of code as an essential part of their syntax.
In the past, implementations of these languages used ad hoc tech-
niques to implement layout. Recent work has shown that a simple
extension to context-free grammars can replace these ad hoc tech-
niques and provide both formal foundations and efficient parsing
algorithms for indentation sensitivity.

However, that previous work is limited to bottom-up, LR(k)
parsing, and many combinator-based parsing frameworks including
Parsec use top-down algorithms that are outside its scope. This
paper remedies this by showing how to add indentation sensitivity
to parsing frameworks like Parsec. It explores both the formal
semantics of and efficient algorithms for indentation sensitivity.
It derives a Parsec-based library for indentation-sensitive parsing
and presents benchmarks on a real-world language that show its
efficiency and practicality.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; D.3.4 [Pro-
gramming Languages]: Processors—Parsing; F.4.2 [Mathemati-
cal Logic and Formal Languages]: Grammars and Other Rewriting
Systems—Parsing

General Terms Algorithms, Languages

Keywords Parsing; Parsec; Indentation sensitivity; Layout; Off-
side rule

1. Introduction

Languages such as Haskell (Marlow (ed.) 2010) and Python
(Python) use the indentation of code to delimit various grammati-
cal forms. For example, in Haskell, the contents of a let, where,
do, or case expression can be indented relative to the surround-
ing code instead of being explicitly delimited by curly braces. For
example, one may write:

mapAccumR f = loop
where loop acc (x:xs) = (acc’’, x’ : xs’)

where (acc’’, x’) = f acc’ x
(acc’, xs’) = loop acc xs

loop acc [] = (acc, [])

Copyright c© ACM, 2014. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in Haskell ’14: Proceedings of the 2014 Haskell Symposium,
September 2014, http://dx.doi.org/10.1145/10.1145/2633357.2633369.

Haskell ’14, September 4–5, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3041-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2633357.2633369

The indentation of the bindings after each where keyword de-
termines the structure of this code. For example, the indentation of
the last line determines that it is part of the bindings introduced by
the first where instead of the second where.

While Haskell and Python are well known for being indenta-
tion sensitive, a large number of other languages also use indenta-
tion. These include ISWIM (Landin 1966), occam (INMOS Lim-
ited 1984), Orwell (Wadler 1985), Miranda (Turner 1989), SRFI-49
(Möller 2005), Curry (Hanus (ed.) 2006), YAML (Ben-Kiki et al.
2009), Habit (HASP Project 2010), F# (Syme et al. 2010), Mark-
down (Gruber), reStructuredText (Goodger 2012), and Idris (Brady
2013a). Unfortunately, implementations of these languages often
use ad hoc techniques to implement indentation. Even the language
specifications themselves describe indentation informally or with
formalisms that are not suitable for implementation.

Previous work on indentation sensitivity (Adams 2013) demon-
strated a grammar formalism for expressing layout rules that is an
extension of context-free grammars and is both theoretically sound
and practical to implement in terms of bottom-up, LR(k) parsing.
However, Parsec (Leijen and Martini 2012), like many combinator-
based libraries, does not use the LR(k) algorithm. It is top-down in-
stead of bottom-up and thus is outside the scope of that work. This
paper extends that work to encompass such systems. We show that
this extension both has a solid theoretical foundation and is practi-
cal to implement. The resulting indentation-sensitive grammars are
easy and convenient to write, and fast, efficient parsers can be easily
implemented for them. Our implementation of these techniques is
available as the indentation package on the Hackage repository.

The organization and contributions of this paper are as follows.

– In Section 2, we review parsing expression grammars (PEG)
and give an informal description of a grammar formalism for
expressing indentation sensitivity.

– In Section 3, we demonstrate the expressivity of this formalism
by reviewing the layout rules of Haskell and Python and then
showing how to express them in terms of this grammar formal-
ism.

– In Section 4, we formalize the semantics of PEG and define an
indentation-sensitive, PEG-based semantics for this grammar
formalism.

– In Section 5, we examine the internals of Parsec, show the
correspondence between it and PEG, and demonstrate how to
implement indentation sensitivity in Parsec.

– In Section 6, we benchmark our implementation on a real-world
language, and we show it to be practical, effective, and efficient
at defining layout rules.

– In Section 7, we review related work and other implementations
of indentation sensitivity.

– In Section 8, we conclude.

1 2014.6.25.1074



Empty string ε

Terminal a where a ∈ Σ

Non-terminal A where A ∈ N

Sequence p1; p2

Lookahead !p

Choice p1 〈|〉 p2

Repetition p∗

Figure 1. Syntax of PEG parsing expressions

2. The Basic Idea

2.1 Parsing Expression Grammars

The basic idea for indentation sensitivity is the same as in Adams
(2013) except that we aim to implement it for the top-down,
combinator-based parsing algorithms used in Parsec. In order to do
this, we base our semantics on parsing expression grammars (PEG)
instead of context-free grammars (CFG) as they more closely align
with the algorithms used by Parsec. In Section 4.1, we review the
formal semantics of PEG, but at a basic level, the intuition behind
PEG is simple. As in a CFG, there are terminals and non-terminals.
However, in a CFG, each non-terminal corresponds to several pro-
ductions that each map the non-terminal to a sequence of terminals
and non-terminals. In a PEG, on the other hand, each non-terminal
corresponds to a single parsing expression. Where in a CFG we
might have the productions A → ’a’A and A → ’b’, in PEG we
have the single production A → (’a’;A) 〈|〉 ’b’.

The syntax of these parsing expressions is defined as shown
in Figure 1 where p, p1, and p2 are parsing expressions. These
operators behave as one would expect with minor adjustments for
the choice and repetition operators. These two are special in that
they are biased. The choice operator is left biased and attempts p2
only if p1 fails. Likewise, the repetition operator is greedy and,
when possible, matches more rather than fewer repetitions. These
biases ensure the uniqueness of the parse result, and thus PEG
avoids the ambiguity problems that can arise with a CFG.

A number of other operators exist in PEG including optional
terms, non-empty repetition (i.e., Kleene plus), positive lookahead,
and a fail operator, but those operators are derived forms that are
not needed in this paper.

2.2 Indentation Sensitivity

In order to support indentation-sensitive parsing, we first modify
the usual notion of parsing by annotating every token in the input
with the column at which it occurs in the source code. We call this
its indentation and write ai for a token a at indentation i.

During parsing we annotate each sub-tree of the parse tree with
an indentation as in Figure 2. These annotations coincide with the
intuitive notion of how far a block of code is indented. Thus, the
sub-tree rooted at A5 is a block indented to column 5. We then place
constraints on how the indentations of sub-trees relate to those of
their parents. This is formally achieved by introducing an operator
p⊲ that specifies that the indentation of a tree parsed by p must have
the relation ⊲ relative to that of its parent where ⊲ is a given numeric
relation. For example, we write p> to specify that a tree parsed by
p must have a strictly greater indentation than its parent. In all other
places, parent and child must have identical indentations. Note that
the indentation of a sub-tree does not directly affect the indentation
of its tokens. Rather, it imposes restrictions on the indentations
of its immediate children, which then impose restrictions on their

A1

(1 A2

[4 A5

(5 A6

∅

)5

]7

)1

A1

(1 A3

A3

[8 A6

A6

(6 A7

∅

)6

A6

[8 A7

∅

]9

]4

A3

(3 A4

∅

)3

)1

Figure 2. Parse trees for (1[4(5)5]7)1 and (1[8(6)6[8]9]4(3)3)1

children and so on until we get to tokens. At any point, these
restrictions can be locally changed by the p⊲ operator.

As a simple example, we may write A → ’(’;A>; ’)’ to
mean that ( and ) must be at the same indentation as the A on
the left of the production arrow, but the A on the right must be at
a greater indentation. We may also write A → ’[’≥;A>; ’]’≥

to mean the same except that [ and ] must be at an indentation
greater than or equal to the indentation of the A on the left of the
production arrow. In addition, we may write A → B∗ to mean that
the indentation of each B must be equal to that of A.

If we combine these, we can get a grammar for indented paren-
theses and square brackets as follows.

A →
(

’(’;A>; ’)’ 〈|〉 ’[’
≥;A>; ’]’

≥
)∗

In that grammar, matching parentheses must align vertically, and
things enclosed in parentheses must be indented more than the
parentheses. Things enclosed in square brackets merely must be
indented more than the surrounding code. Figure 2 shows exam-
ples of parse trees for this grammar on the words (1[4(5)5]7)1

and (1[8(6)6[8]9]4(3)3)1. In these parse trees, note how the in-
dentations of the non-terminals and terminals relate to each other
according to the indentation relations specified in the grammar.

While in principle any set of indentation relations can be used,
we restrict ourselves to the relations =, >, ≥, and ⊛ as these cover
the indentation rules of most languages. The =, >, and ≥ relations
have their usual meanings. The ⊛ relation is {(i, j) | i, j ∈ N} and
disassociates the indentation of a child from that of its parent.

Finally, indentation-sensitive languages typically have forms
where the first token of a subexpression determines the indenta-
tion of the rest of the subexpression. For example, in Haskell the
branches of a case must all align and have their the initial tokens at
the same indentation as each other. To handle this, we introduce the
|p| operator, which behaves identically to p except that its indenta-
tion is always equal to the indentation of the first token of p. In the
context of a CFG, this operator can be defined as mere syntactic
sugar (Adams 2013). However, PEG’s lookahead operator makes
this difficult to specify as a desugaring. Thus we introduce it as a
first-class operator and formally specify its behavior in Section 4.2.

3. Indentation-Sensitive Languages

Despite the simplicity of this framework for indentation sensitivity,
it can express a wide array of layout rules. We demonstrate this by
reviewing the layout rules for Haskell and Python and then show-

2 2014.6.25.1074



ing how they can be expressed as indentation-sensitive grammars.
Though not shown here, sketches for other indentation-sensitive
languages have been constructed for ISWIM, Miranda, occam,1 Or-
well, Curry, Habit, Idris, and SRFI-49. Those already familiar with
the techniques in Adams (2013) can safely skip this section.

3.1 Haskell

3.1.1 Language

In Haskell, indentation-sensitive blocks (e.g., the bodies of do,
case, or where expressions) are made up of one or more state-
ments or clauses that not only are indented relative to the surround-
ing code but also are indented to the same column as each other.
Thus, lines that are more indented than the block continue the cur-
rent clause, lines that are at the same indentation as the block start
a new clause, and lines that are less indented than the block are
not part of the block. In addition, semicolons (;) and curly braces
({ and }) can explicitly separate clauses and delimit blocks, re-
spectively. Explicitly delimited blocks are exempt from indentation
restrictions arising from the surrounding code.

While the indentation rules of Haskell are intuitive to use in
practice, the way that they are formally expressed in the Haskell
language specification (Marlow (ed.) 2010, §10.3) is not nearly so
intuitive. The indentation rules are specified in terms of both the
lexer and an extra pass between the lexer and the parser. Roughly
speaking, the lexer inserts special {n} tokens where a new block
might start and special <n> tokens where a new clause within a
block might start. The extra pass then translates these tokens into
explicit semicolons and curly braces.

The special tokens are inserted according to the following rules.

– If a let, where, do, or of keyword is not followed by the
lexeme {, the token {n} is inserted after the keyword, where n
is the indentation of the next lexeme if there is one, or 0 if the
end of file has been reached.

– If the first lexeme of a module is not { or module, then it is
preceded by {n} where n is the indentation of the lexeme.

– Where the start of a lexeme is preceded only by white space
on the same line, this lexeme is preceded by <n>, where n
is the indentation of the lexeme, provided that it is not, as a
consequence of the first two rules, preceded by {n}. (Marlow
(ed.) 2010, §10.3)

Between the lexer and the parser, an indentation resolution pass
converts the lexeme stream into a stream that uses explicit semi-
colons and curly braces to delimit clauses and blocks. The stream of
tokens from this pass is defined to be L tokens [] where tokens
is the stream of tokens from the lexer and L is the function in Fig-
ure 3. Thus the context-free grammar only has to deal with semi-
colons and curly braces. It does not deal with layout.

This L function is fairly intricate, but the key clauses are the
ones dealing with <n> and {n}. After a let, where, do, or of
keyword, the lexer inserts a {n} token. If n is a greater indentation
than the current indentation, then the first clause for {n} executes,
an open brace ({) is inserted, and the indentation n is pushed on
the second argument to L (i.e., the stack of indentations). If a line
starts at the same indentation as the top of the stack, then the first
clause for <n> executes, and a semicolon (;) is inserted to start
a new clause. If it starts at a smaller indentation, then the second
clause for <n> executes, and a close brace (}) is inserted to close
the block started by the inserted open brace. Finally, if the line is at
a greater indentation, then the third clause executes, no extra token
is inserted, and the line is a continuation of the current clause. The

1 The additional indentation relation {(i+ 2, i) | i ∈ N} is required by
occam as it has forms that require increasing indentation by exactly 2.

L (<n>:ts) (m:ms) = ’;’ : (L ts (m:ms)) if m = n
= ’}’ : (L (<n>:ts) ms) if n < m

L (<n>:ts) ms = L ts ms
L ({n}:ts) (m:ms) = ’{’ : (L ts (n:m:ms)) if n > m
L ({n}:ts) [] = ’{’ : (L ts [n]) if n > 0
L ({n}:ts) ms = ’{’ : ’}’ : (L (<n>:ts) ms)
L (’}’:ts) (0:ms) = ’}’ : (L ts ms)
L (’}’:ts) ms = parse-error
L (’{’:ts) ms = ’{’ : (L ts (0:ms))
L ( t :ts) (m:ms) = ’}’ : (L (t:ts) ms)

if m 6= 0 and parse-error(t)
L ( t :ts) ms = t : (L ts ms)
L [] [] = []
L [] (m:ms) = ’}’ : L [] ms if m 6= 0

Figure 3. Haskell’s L function (Marlow (ed.) 2010, §10.3)

effect of all this is that {, ;, and } tokens are inserted wherever
layout indicates that blocks start, new clauses begin, or blocks end,
respectively. The other clauses in L handle a variety of other edge
cases and scenarios.

Note that L uses parse-error to signal a parse error but uses
parse-error(t) as an oracle that predicts the future behavior of
the parser that runs after L. Specifically,

if the tokens generated so far by L together with the next
token t represent an invalid prefix of the Haskell grammar,
and the tokens generated so far by L followed by the token
“}” represent a valid prefix of the Haskell grammar, then
parse-error(t) is true. (Marlow (ed.) 2010, §10.3)

This handles code such as

let x = do f; g in x

where the block starting after the do needs to be terminated before
the in. This requires knowledge about the parse structure in order
to be handled properly, and thus parse-error(t) is used to query
the parser for this information.

In addition to the operational nature of this definition, the use of
the parse-error(t) predicate means that L cannot run as an inde-
pendent pass; its execution must interact with the parser. In fact, the
Haskell implementations GHC (GHC 2011) and Hugs (Jones 1994)
do not use a separate pass for L. Instead, the lexer and parser share
state consisting of a stack of indentations. The parser accounts for
the behavior of parse-error(t) by making close braces optional
in the grammar and appropriately adjusting the indentation stack
when braces are omitted. The protocol relies on “some mildly com-
plicated interactions between the lexer and parser” (Jones 1994)
and is tricky to use. Even minor changes to the error propagation
of the parser can affect whether syntactically correct programs are
accepted. While we may believe in the correctness of these parsers
based on their many years of use and testing, the significant and
fundamental structural differences between the language specifica-
tion and these implementations are troubling.

3.1.2 Grammar

While the specification of Haskell’s layout rule is complicated, it
can be easily and intuitively specified using our indentation opera-
tors. By using these operators there is no need for an intermediate L
function, and the lexer and parser can be cleanly separated into self-
contained passes. The functionality of parse-error(t) is simply
implicit in the structure of the grammar.

For example, Figure 4 shows productions that specify the case
form and its indentation rules. With regard to terminals, we anno-
tate most of them with an indentation relation of > in order to allow
them to appear at any column greater than the current indentation.

3 2014.6.25.1074



case → ’case’> ; exp ; ’of’> ; (eAlts 〈|〉 iAlts)
eAlts → ’{’> ; alts⊛ ; ’}’⊛

iAlts → (|alts|∗)>

alts → (alt’ 〈|〉 alt) ; alt’∗

alt’ → ’;’> ; (alt 〈|〉 ε)

Figure 4. Productions for Haskell’s case form

We use > instead of ≥ because Haskell distinguishes tokens that
are at an indentation equal to the current indentation from tokens
that are at a strictly greater indentation. The former start a new
clause while the latter continue the current clause. An exception
to this rule is the closing curly brace (}) of an explicitly delimited
block. Haskell’s indentation rule allows it to appear at any column.
Thus, eAlts annotates it with ⊛ instead of the usual >.

In Haskell, a block can be delimited by either explicit curly
braces or use of the layout rule. In Figure 4, this is reflected by
the two non-terminals eAlts and iAlts. The former expands to
’{’> ; alts⊛ ; ’}’⊛ where alts is a non-terminal parsing a
semicolon-separated sequence of case alternatives. The ⊛ relation
allows alts to not respect the indentation of the surrounding code.

The other non-terminal, iAlts, expands to (|alts|∗)>. The >
relation increases the indentation, and the repetition operator allows
zero or more |alts| to be parsed. Due to the > relation, these may
be at any indentation greater than the current indentation, but they
still must be at the same indentation as each other as they are all
children of the same parsing expression, |alts|∗. The use of |alts|
instead of alts ensures that the first tokens of the alts are all
at the same indentation as the |alts| itself. Thus the alternatives
in a case expression all align to the same column as each other.
Note that because iAlts refers to alts instead of alt, we have
the option of using semicolons (;) to separate clauses in addition to
using layout. When using curly braces to explicitly delimit a block,
semicolons must always be used.

Haskell has a side condition requiring every case to contain at
least one alt. It cannot contain just a sequence of semicolons (;).
This can be implemented either as a check after parsing or by split-
ting alts and |alts|∗ into different forms depending on whether
an alt has been parsed.

Other grammatical forms that use the layout rule follow the
same general pattern as case with only minor variation to account
for differing base cases (e.g., let uses decl in place of alt) and
structures (e.g., a do block is a sequence of stmt ending in an exp).

Finally, GHC also supports an alternative indentation rule that
is enabled by the RelaxedLayout extension. It allows opening
braces to be at any column regardless of the current indenta-
tion (GHC 2011, §1.5.2). This is easily implemented by changing
eAlts to be:

eAlts → ’{’⊛ ; alts⊛ ; ’}’⊛

3.2 Python

3.2.1 Language

Python represents a different approach to specifying indentation
sensitivity. It is explicitly line oriented and features NEWLINE in its
grammar as a terminal that separates statements. The grammar uses
INDENT and DEDENT tokens to delimit indentation-sensitive forms.
An INDENT token is emitted by the lexer whenever the start of a line
is at a strictly greater indentation than the previous line. Matching
DEDENT tokens are emitted when a line starts at a lesser indentation.

In Python, indentation is used only to delimit statements, and
there are no indentation-sensitive forms for expressions. This, com-
bined with the simple layout rules, would seem to make parsing

Python much simpler than for Haskell, but Python has line joining
rules that complicate matters.

Normally, each new line of Python code starts a new statement.
If, however, the preceding line ends in a backslash (\), then the
current line is “joined” with the preceding line and is a continuation
of the preceding line. In addition, tokens on this line are treated as
if they had the same indentation as the backslash itself.

Python’s explicit line joining rule is simple enough to imple-
ment directly in the lexer, but Python also has an implicit line join-
ing rule. Specifically, expressions

in parentheses, square brackets or curly braces can be split
over more than one physical line without using backslashes.
... The indentation of the continuation lines is not important.
(Python, §2.1.6)

This means that INDENT and DEDENT tokens must not be emitted by
the lexer between paired delimiters. For example, the second line of
the following code should not emit an INDENT, and the indentation
of the third line should be compared to the indentation of the first
line instead of the second line.

x = [
y ]
z = 3

Thus, while the simplicity of Python’s indentation rules is attrac-
tive, they contain hidden complexity that requires interleaving the
execution of the lexer and parser.

3.2.2 Grammar

Though Python’s specification presents its indentation rules quite
differently from Haskell’s specification, once we translate it to use
our indentation operators, it shares many similarities with that of
Haskell. The lexer still needs to produce NEWLINE tokens, but it
does not produce INDENT or DEDENT tokens. As with Haskell, we
annotate terminals with the default indentation relation >.

In Python, the only form that changes indentation is the suite
non-terminal, which represents a block of statements contained
inside a compound statement. For example, one of the productions
for while is:

while_stmt → ’while’> ; test ; ’:’> ; suite

A suite has two forms. The first is for multi-line statements, and
the second is for single-line statements that are not delimited by
indentation. The following productions handle both of these cases.

suite → NEWLINE> ; block>

〈|〉 stmt_list ; NEWLINE>

block → |statement|∗

When a suite is of the indentation-sensitive, multi-line form (i.e.,
using the left-hand side of the choice), the initial NEWLINE token
ensures that the suite is on a separate line from the preceding
header. The block inside a suite must then be at some indenta-
tion greater than the current indentation. Such a block is a sequence
of statement forms that all start with their first token at the same
column. In Python’s grammar, the productions for statement al-
ready include a terminating NEWLINE, so NEWLINE is not needed in
the productions for block.

Finally, for implicit line joining, we employ the same trick as for
braces in Haskell. For any form that contains parentheses, square
brackets, or curly braces, we annotate the part contained in the
delimiters with the ⊛ indentation relation. Since the final delimiter
is also allowed to appear at any column, we annotate it with ⊛. For
example, one of the productions for list construction becomes:

atom → ’[’> ; listmaker⊛ ; ]⊛

4 2014.6.25.1074



Empty string (ε, w) ⇒ (1,⊤(ε))

Terminal (a, aw) ⇒ (1,⊤(a))

(a, bw) ⇒ (1,⊥) if a 6= b

(a, ε) ⇒ (1,⊥)

Non-terminal (A,w) ⇒ (n+ 1, o) if (δ(A), w) ⇒ (n, o)

Sequence (p1; p2, w1w2u) ⇒ (n1 + n2 + 1,⊤(w1w2)) if (p1, w1w2u) ⇒ (n1,⊤(w1))

and (p2, w2u) ⇒ (n2,⊤(w2))

(p1; p2, w1w2u) ⇒ (n1 + 1,⊥) if (p1, w1w2u) ⇒ (n1,⊥)

(p1; p2, w1w2u) ⇒ (n1 + n2 + 1,⊥) if (p1, w1w2u) ⇒ (n1,⊤(w1))

and (p2, w2u) ⇒ (n2,⊥)

Lookahead (!p, wu) ⇒ (n+ 1,⊤(ε)) if (p, wu) ⇒ (n,⊥)

(!p, wu) ⇒ (n+ 1,⊥) if (p, wu) ⇒ (n,⊤(w))

Choice (p1 〈|〉 p2, wu) ⇒ (n1 + 1,⊤(w)) if (p1, wu) ⇒ (n1,⊤(w))

(p1 〈|〉 p2, wu) ⇒ (n2 + 1, o) if (p1, wu) ⇒ (n1,⊥)

and (p2, wu) ⇒ (n2, o)

Repetition (p∗, w1w2u) ⇒ (n1 + n2 + 1,⊤(w1w2)) if (p, w1w2u) ⇒ (n1,⊤(w1))

and (p∗, w2u) ⇒ (n2,⊤(w2))

(p∗, w1w2u) ⇒ (n+ 1,⊤(ε)) if (p, w1w2u) ⇒ (n,⊥)

Figure 5. Semantics of PEG

4. Parsing Expression Grammars

In order to formalize our notion of indentation-sensitive parsing,
we first review the formal semantics of PEG before extending it
to support indentation sensitivity. In Section 5, we show how this
semantics corresponds to and is implemented in Parsec.

4.1 Parsing Expression Grammars

Parsing expression grammars (PEG) are a modern recasting of top-
down parsing languages (TDPL) (Aho and Ullman 1972) that has
recently become quite popular and has a large number of imple-
mentations. Aside from the fact that PEG uses parsing expressions
instead of productions, the main difference between PEG and CFG
is that all choices are biased so there is only ever one possible result
for an intermediate parse. For example, the choice operator, 〈|〉, is
left biased. Ambiguous parses are thus impossible by construction.

From a practical perspective, this model makes it easy to imple-
ment PEG as a top-down parser where each terminal translates to
a primitive, each non-terminal translates to a function, and the se-
quencing operator translates to sequencing in the code. In addition,
the backtracking logic is relatively easy to implement. A choice
operator first attempts to parse its left-hand side. Only if that fails
does it backtrack and attempt to parse its right-hand side.

As formally defined by Ford (2004), a parsing expression gram-
mar, G, is a four-tuple G = (N,Σ, δ, S) where N is a finite set of
non-terminal symbols, Σ is a finite set of terminal symbols, δ is a fi-
nite production relation, and S ∈ N is the start symbol. This much
is identical to the traditional definition of a context-free grammar.
The difference comes in how δ is defined. It is a mapping from a
non-terminal symbol to a parsing expression and we write A → p
if δ maps A to p. Unlike in CFG, there is only one p to which a
given A maps, and thus we write δ (A) to denote that parsing ex-
pression.

The formal semantics for the operators in a parsing expression
are given in terms of a rewrite relation from a pair, (p, w), of the

parsing expression, p, and an input word, w, to a pair, (n, o), of a
step counter, n, and a result, o. The result o is either the portion of
w that is consumed by a successful parse or, in the case of failure,
the distinguished symbol ⊥. For the sake of clarity, when o is not
⊥, we write it as ⊤(w) where w is the parsed word. This rewrite
relation is defined inductively as shown in Figure 5. Note that while
the step counter is used to complete inductive proofs about PEG, it
is not needed by the parsing process and can usually be ignored.

The intuition behind these rules is fairly straightforward. The
empty parsing expression, ε, succeeds on any input in one step.
A terminal parsing expression succeeds on an input where next
token is the terminal that the parsing expression expects and fails
otherwise. A non-terminal runs the parsing expression associated
with that non-terminal. Sequencing succeeds and consumes w1w2

if the first parsing expression, p1, consumes w1 on input w1w2u
and the second parsing expression, p2, consumes w2 on input
w2u. Lookahead succeeds only if p fails and fails otherwise. The
choice form is one of the characteristic features of PEG and is left
biased. If p1 successfully consumes w on input wu, then the choice
operator also succeeds by consuming w on input wu. Otherwise,
if p1 fails, then p2 is run. The repetition operator is greedy. If p
successfully consumes w1 on input w1w2u and p∗ successfully
consumes w2 on input w2u, then p∗ consumes w1w2 on input
w1w2u. Otherwise, if p fails, then p∗ succeeds while consuming
no input.

4.2 Indentation Sensitivity

In order to add indentation sensitivity to the semantics of PEG, we
need to pass information about layout to each parse. While it is
tempting to think that this would just be the value of the current
indentation, that is not sufficient. For example, suppose we are
parsing the iAlts of a case expression and the case expression
is at indentation 1. The body of that iAlts is allowed at any
indentation greater than 1, but we do not know which indentation
grater than 1 to use until iAlts consumes its first token. So,

5 2014.6.25.1074



Empty string (ε, w, I, f) ⇒ (1,⊤f
I (ε))

Terminal (a, aiw, I, f) ⇒ (1,⊤
∦

{i}(a)) if i ∈ I

(a, biw, I, f) ⇒ (1,⊥) if a 6= b or i /∈ I

(a, ε, I, f) ⇒ (1,⊥)

Non-terminal (A,w, I, f) ⇒ (n+ 1, o) if (δ(A), w, I,m) ⇒ (n, o)

Sequence (p1; p2, w1w2u, I, f) ⇒ (n1 + n2 + 1,⊤h
K(w1w2)) if (p1, w1w2u, I, f) ⇒ (n1,⊤

g
J(w1))

and (p2, w2u, J, g) ⇒ (n2,⊤
h
K(w2))

(p1; p2, w1w2u, I, f) ⇒ (n1 + 1,⊥) if (p1, w1w2u, f) ⇒ (n1,⊥)

(p1; p2, w1w2u, I, f) ⇒ (n1 + n2 + 1,⊥) if (p1, w1w2u, I, f) ⇒ (n1,⊤
g
J(w1))

and (p2, w2u, J, g) ⇒ (n2,⊥)

Lookahead (!p, wu, I, f) ⇒ (n+ 1,⊤f
I (ε)) if (p, wu, I, f) ⇒ (n,⊥)

(!p, wu, I, f) ⇒ (n+ 1,⊥) if (p, wu, I, f) ⇒ (n,⊤g
J(w))

Choice (p1 〈|〉 p2, wu, I, f) ⇒ (n1 + 1,⊤g
J(w)) if (p1, wu, I, f) ⇒ (n1,⊤

g
J(w))

(p1 〈|〉 p2, wu, I, f) ⇒ (n2 + 1, o) if (p1, wu, I, f) ⇒ (n1,⊥)

and (p2, wu, I, f) ⇒ (n2, o)

Repetition (p∗, w1w2u, I, f) ⇒ (n1 + n2 + 1,⊤h
K(w1w2)) if (p, w1w2u, I, f) ⇒ (n1,⊤

g
J(w1))

and (p∗, w2u, J, g) ⇒ (n2,⊤
h
K(w2))

(p∗, w1w2u, I, f) ⇒ (n+ 1,⊤f
I (ε)) if (p, w1w2u, I, f) ⇒ (n,⊥)

Indentation (p⊲, wu, I, ∦) ⇒ (n+ 1,⊤f

I′
(w)) if (p, wu, J, ∦) ⇒ (n,⊤f

J′(w))

where J = {j | j ∈ N, ∃i ∈ I, j ⊲ i}

I ′ = {i | i ∈ I, ∃j ∈ J ′, j ⊲ i}

(p⊲, wu, I, ∦) ⇒ (n+ 1,⊥) if (p, wu, J, ∦) ⇒ (n,⊥)

where J = {j | j ∈ N, ∃i ∈ I, j ⊲ i}

(p⊲, wu, I, ‖) ⇒ (n+ 1, o) if (p, wu, I, ‖) ⇒ (n, o)

Absolute alignment (|p|, wu, I, f) ⇒ (n+ 1, o) if (p, wu, I, ‖) ⇒ (n, o)

Figure 6. Indentation-sensitive semantics of PEG

instead of passing a single indentation, we must pass a set of
allowable indentations. In our example, since the case expression
is at indentation 1, the body of iAlts is passed the set {2, 3, 4, · · · }
as the allowable indentations.

However, this is still not enough. Consider for example, the
parsing expression ’a’;

(

’b’> 〈|〉 ε
)

. If a occurs at indentation i
in the input, then b must be allowed at only indentations strictly
greater than i. This is even though ’a’ does not contain ’b’ and
merely occurs sequentially earlier in the parsing expression.

Further, since PEG uses a biased choice, we must use the right-
hand side of ’b’> 〈|〉 ε only if it is impossible to parse using its
left-hand side. However, whether ’b’> succeeds or not is entirely
dependent on the indentation at which ’a’ succeeds. For example,
on the input word a1b2, the parser for ’a’ succeeds at 1, and thus
’b’ can be attempted at any indentation greater than 1. Since 2 is
in that range, the parser for ’b’ succeeds, and ε is never called.
However, with the input word a3b2, the a token is at indentation 3,
which restricts the allowed indentations for ’b’ to {4, 5, 6, · · · }.
Thus the parser for ’b’ fails, and ε is used.

In other words, since choices are biased, parses earlier in the
input affect whether the left-hand side of a choice succeeds and
thus whether the right-hand side should even be attempted. Thus
indentation sets must be passed as both input and output in order

to both control the indentations at which a parse is attempted and
report the indentations at which it succeeds.

In addition to handling indentation relations, we must also han-
dle the |p| operator. This can be achieved by passing a flag to each
parser indicating whether we are inside a |p| that has not yet con-
sumed a token. If we are, we must not change the current indenta-
tion set and thus ignore any p⊲ operators.

We formally specify all this by generalizing the PEG rewrite
rules to be a relation from a tuple (p, w, I, f) to a pair (n, o) where
p is a parsing expression, w is an input word, I ⊆ N is an input
indentation set, f ∈ {‖, ∦} is an absolute-alignment flag, n is a
step counter, and o is a result. The absolute-alignment flag is ‖ to
indicate that we are inside a |p| that has not yet consumed a token
and ∦ otherwise. The result o is either a pair of the portion of w that
is consumed by a successful parse along with a result indentation
set I ⊆ N and flag f ∈ {‖, ∦} or, in the case of failure, the
distinguished symbol ⊥. When o is not ⊥, we write it as ⊤f

I (w)
where w, I , and f are respectively the parsed word, the output
indentation set, and the absolute-alignment flag. Finally, the tokens
in words are all annotated with indentations so w ∈ (Σ× N)∗.

The rules from Figure 5 then straightforwardly generalize to the
rules in Figure 6. The empty parsing expression, ε, succeeds on
any input and so returns I and f unchanged. The terminal parsing

6 2014.6.25.1074



...
(

alts, Left5 · · · , {2, 3, 4, · · · } , ‖
)

⇒
(

· · · ,⊤
∦

{5} (· · · )
)

(

|alts| , Left5 · · · , {2, 3, 4, · · · } , ∦
)

⇒
(

· · · ,⊤
∦

{5} (· · · )
)

...
(

alts, Right4 · · · , {5} , ‖
)

⇒ (· · · ,⊥)
(

|alts| , Right4 · · · , {5} , ∦
)

⇒ (· · · ,⊥)
(

|alts|∗ , Right4 · · · , {5} , ∦
)

⇒ (· · · ,⊥)

(

|alts|∗ , Left5 · · · , {2, 3, 4, · · · } , ∦
)

⇒
(

· · · ,⊤
∦

{5} (· · · )
)

(

(|alts|∗)> , Left5 · · · , {1} , ∦
)

⇒
(

· · · ,⊤
∦

{1} (· · · )
)

(

iAlts, Left5 · · · , {1} , ∦
)

⇒
(

· · · ,⊤
∦

{1} (· · · )
)

...

Figure 7. Example parse derivation

|fun|1

pApp1

ID1

f ID3

x

’=’5 app1

exp1

’case’3 exp1

ID8

x

’of’10 iAlts1

(|alts|∗)5

|alts|5

alts5

alt5

pApp5

ID5

Left ID10

_

’->’12 exp5

ID15

id

exp1

ID4

Right

Figure 8. Example parse tree

expression, however, succeeds only when i, the indentation of the
consumed token, is in the set of allowed indentations. Then, as
a token has now been consumed, it clears the flag. In that case,
it returns the singleton {i} as the only indentation at which it
succeeds. In all other cases, it fails.

The sequencing operator just threads the indentation set and flag
through both p1 and p2. Lookahead is similar and just passes the
indentation set and flag through unchanged. The choice operator
passes the same indentation set and flag to both parsers.

The interesting cases here are the newly added operators for
indentation, p⊲, and absolute alignment, |p|. The indentation op-
erator runs the parsing expression p with a new indentation set J
computed according to ⊲ and I . Specifically, every element of J is
related by ⊲ to some element of I . For example, if we have p> with
I = {1, 2}, then J = {2, 3, 4, · · · }. Once the parsing of p com-
pletes, the indentations at which it succeeded, J ′, are compared to
the original indentation set, I , to see which elements of I are com-
patible according to ⊲. Those elements of I are then returned in the
output indentation set, I ′.

An exception to this is when we are parsing in absolute mode.
That is to say, when f is ‖. In that case, the parent and child

must have identical indentations despite the p⊲ operator. Thus, the
indentation set does not change, and the p⊲ is effectively ignored.

Finally, the |p| operator is trivial and merely sets the flag to ‖.

4.3 Example Derivation

As an example of this semantics, consider parsing the following
Haskell code with the productions in Figure 4.

f x =
case x of

Left _ -> id
Right

Because case occurs at column 3, Left occurs at column 5, and
Right occurs at column 4, the Right token should not be part of
the case expression. Thus this code is equivalent to the following.

f x = (case e of Left _ -> id) Right

When initially parsing the right-hand side of f, the indentation set
and flag will be {1} and ∦. As the parser proceeds, it will consume
the case, x, and of tokens. In the grammar, the terminals for these
are annotated with the > indentation relation, and in the input,
the indentations of these tokens are all greater than 1. Thus, these
tokens are successfully consumed without changing the indentation
set or flag. Once we get to the Left token though, the current
parsing expression will be eAlts 〈|〉 iAlts. Since the next token
is not {, eAlts will fail and a parse of iAlts will be attempted.

At this point, indentation sensitivity starts to play a role. The
fragment of the parse derivation for this part is shown in Figure 7.
First, iAlts unfolds into (|alts|∗)>. The > relation means that
we change from using the {1} indentation set to the {2, 3, 4, · · · }
indentation set. The |alts|∗ then calls |alts|, which in turn sets
the flag to ‖. With this flag set, intermediate indentation relations
are ignored so the indentation set does not change until we get to
the parsing expression that actually consumes Left. Though the
terminal for consuming this token will be wrapped with the >
relation as explained in Section 3.1.2, this will be ignored as the
flag is ‖ at that point. Thus, when consuming the Left token, the
indentation set is {2, 3, 4, · · · }. Since the indentation of Left (i.e.,
5) is in that set, the token is successfully consumed. The flag is then
set to ∦, and the indentation set becomes {5}. This indentation set
is used when parsing the remainder of the clause. Since terminals
are wrapped by the > relation, this means that each token in that
clause is allowed at any column in the set {j | i ∈ {5} , j > i} =
{6, 7, 8, · · · }. This distinction between the first token of |alts|
(which must have an indentation equal to the indentation of |alts|

7 2014.6.25.1074



data IndentationRel = Eq | Ge | Gt | Any

localIndentation :: IndentationRel
-> ParsecT (IndentStream s) u m a
-> ParsecT (IndentStream s) u m a

absoluteIndentation ::
ParsecT (IndentStream s) u m a

-> ParsecT (IndentStream s) u m a

localTokenMode :: IndentationRel
-> ParsecT (IndentStream s) u m a
-> ParsecT (IndentStream s) u m a

Figure 9. Parsec combinators for indentation sensitivity

itself) and the other tokens of |alts| (which must have indentations
greater than the indentation of |alts|) allows us to handle the
distinction that Haskell makes between tokens at an indentation
equal to the current indentantion (which start a new clause) and
tokens at a greater indentation (which continue the current clause).

In Figure 7, once the remainder of that alts is parsed, the
indentation set {5} is threaded back out through |alts| to |alts|∗.
The indentation set and flag are then used in the second branch
of |alts|∗ where the process proceeds as it did before. This time,
however, the next token (i.e., Right) is at indentation 4, which is
not an element of the indentation set {5}. Thus that token cannot
be consumed, and the result is ⊥. This causes the case expression
to stop at this point and leaves the Right token for a surrounding
function application to consume.

The final parse tree for this expression is then as shown in Fig-
ure 8. We can see in this tree how ID4

Right could not be a descen-

dant of (|alts|∗)5 as their indentations do not relate according to
the relations specified in the grammar.

5. Parsec

With this formal model, we can now consider how to implement
indentation sensitivity for Parsec. The basic types and operators
that we add to Parsec are shown in Figure 9. The IndentationRel
type represents an indentation relation where Eq is =, Ge is ≥,
Gt is >, and Any is ⊛. The expression localIndentation r
p applies the indentation relation r to p and corresponds to pr .
Likewise, absoluteIndentation p ensures that the first token
of p is at the current indentation and corresponds to |p|. Finally,
localTokenMode locally sets a default IndentationRel that is
applied to all tokens. This eliminates the need to explicitly annotate
the tokens in most productions.

To see how to implement these operations, first, we examine
how PEG relates to Parsec. Then, we discus the practical imple-
mentation of the indentation-sensitive semantics in Parsec.

5.1 Parsec Internals

The semantics of PEG corresponds closely to the behavior of Par-
sec. Since this connection is not often made explicit, we now delve
into the details of how Parsec is implemented and show how it cor-
responds to the PEG semantics.

Note that we are considering the semantics of PEG and Parsec
and not their implementations. PEG implementations commonly
cache the results of parses in order to ensure a linear bound on
parsing time. Parsec does not do this, and relatively simple Par-
sec grammars can take exponential time. Nevertheless, though the
implementation and the run times of these parsers can vary quite
widely, the semantics of these systems correspond.

newtype ParsecT s u m a = ParsecT {
unParser :: forall b.

State s u
-> (a -> State s u -> ParseError -> m b)
-> (ParseError -> m b)
-> (a -> State s u -> ParseError -> m b)
-> (ParseError -> m b)
-> m b

}

data State s u = State {
stateInput :: s,
statePos :: SourcePos,
stateUser :: u

}

Figure 10. Data types for Parsec

In Parsec, a parser is represented by an object of type ParsecT.
This type is shown in Figure 10. The s parameter is the type of the
input stream. The u parameter is the type of the user state that is
threaded through parser computations. The m parameter is the type
of the underlying monad, and the a parameter is the type of the
result produced by the parser.

The State s u parameter to unParser is the input to the
parser. It is similar to the w in a (p, w) ⇒ (n, o) rewrite and
contains the input stream in the stateInput field. In addition,
statePos contains the source position, and stateUser contains
user-defined data.

The remaining parameters to unParser are continuations for
different types of parse result. The continuations of type a ->
State s u -> ParseError -> m b are for successful parses.
The parameter a is the object produced by the parse. State s
u is the new state after consuming input, and ParseError is a
collection of error messages that are used if the parser later fails.
On the other hand, the continuations of type ParseError -> m b
are for failed parses where the ParseError parameter contains the
error message to be reported to the user.

These two types of continuations are very similar to the success
and failure continuations often used to implement backtracking.
One difference, however, is that there are two each of both sorts
of continuation. This is because by default Parsec attempts further
alternatives in a choice operator only if the previous failures did not
consume any input. For example, consider the parsing expression
(’a’; ’b’) 〈|〉 (’a’; ’c’) on the input ac. The parsing expression
’a’; ’b’ will fail but only after consuming the a. Thus in Parsec,
the failure of ’a’; ’b’ is a consumed failure, and the alternative
parsing expression ’a’; ’c’ is not attempted.

Parsec also includes the try operator, which makes a consumed
failure be treated as an empty failure. For example, if we use
(try (’a’; ’b’)) 〈|〉 (’a’; ’c’) on the same input, then the failure
of ’a’; ’b’ is treated as an empty failure, and the alternative
’a’; ’c’ is attempted.

In the ParsecT type, the second and third arguments to the
unParser function are continuations used for consumed success
or consumed failure, respectively. Likewise, the fourth and fifth ar-
guments are continuations used for empty success or empty failure,
respectively. For example, the parser for the empty string does not
consume any input and should thus always produce an empty suc-
cess. Such a parser is easily implemented as follows, where a is the
object to be returned by the parser, and e is an appropriately defined
ParseError.

parserReturn a =
ParsecT $ \s _ _ eOk _ -> eOk a s e

8 2014.6.25.1074



data Consumed a = Consumed a
| Empty a

data Reply s u a = Ok a (State s u) ParseError
| Error ParseError

Figure 11. Data types for Parsec parse results

type Indentation = Int
infInd = maxBound :: Indentation

data IState = IState {
minInd :: Indentation,
maxInd :: Indentation,
absMode :: Bool,
tokenRel :: IndentationRel

}

Figure 12. Data types for indentation sensitivity

This parser simply calls eOk, which is the continuation for empty
success.

On the other hand, the parser for a character c consumes input
and is implemented as follows, where e1 and e2 are appropriately
defined ParseError objects.

parseChar c = ParsecT $ \s cOk _ _ eErr ->
case stateInput s of

(x : xs) | x == c ->
cOk x (s { stateInput = xs }) e1

_ -> eErr e2

This parser checks the input s to see if the next character matches c.
If it does, cOk, the consumed success continuation, is called with an
updated State. Otherwise, eErr, the empty failure continuation, is
called.

The continuation passing style of ParsecT can be difficult to
reason about, but we can convert it to direct style where it returns
an object with different constructors for different kinds of results.
Parsec provides such an alternate representation using the types in
Figure 11. Thus, the ParsecT type is equivalent to a function from
State s u to m (Consumed (Reply s u a)).

Represented in these terms, the correspondence between PEG
and Parsec is straightforward. The Parsec parser contains extra in-
formation that is not present in PEG such as the SourcePosition
and user state stored in the State, whether a parser consumes in-
put or not, the monad m, and the result value of type a. However,
if we elide this extra data, then a Parsec parser is simply a func-
tion from an input word stored in the State to either a successful
or failed parse stored in Reply. This corresponds to a PEG rewrite
(p, w) ⇒ (n, o) from an input word, w, to either a successful or
failed result, o.2

5.2 Indentation Sensitivity

Given the correspondence between PEG and Parsec, we can now
implement indentation sensitivity in Parsec. The primary challenge
here is the representation of the indentation set, I . Since this set
may be infinitely large (such as at the start of p in p>), we need to
find an efficient, finite way to represent it. Fortunately, the follow-
ing theorem allows us to construct just such a representation.

2 There is still a difference in that a Parsec Reply stores the remaining input
whereas in PEG o contains the consumed input, but these are equivalent in
this context.

class (Monad m) => Stream s m t | s -> t where
uncons :: s -> m (Maybe (t,s))

Figure 13. Code for the Stream class

data IStream s = IStream {
iState :: IState,
tokenStream :: s

}

instance (Stream s m (t, Indentation)) =>
Stream (IStream s) m t where

uncons (IStream is s) = do
x <- uncons s
case x of

Nothing -> return Nothing
Just ((t, i), s’) ->

return $ updateIndentation is i ok err
where

ok is’ = Just (t, IStream is’ s’)
err = Nothing

Figure 14. Code for IStream and its Stream instance

Theorem 1. When parsing a parsing expression p that uses inden-
tation relations only from the set {=, >,≥,⊛}, all of the interme-
diate indentation sets are of the form {j | j ∈ N, i ≤ j < k} for
some i ∈ N and k ∈ N ∪ {∞} provided the initial indentation set
passed to p is also of that form.

Proof. By induction over p and the step counter n.

As a result of this theorem, each indentation set can be rep-
resented by a simple lower and upper bound. This leads to the
IState type defined in Figure 12, which we thread through the
parsing process to keep track of all the state needed for indenta-
tion sensitivity. The minInd and maxInd fields of IState repre-
sent the lower and upper bounds, respectively. The infInd con-
stant represents when maxInd is infinite. The absMode field is used
to keep track of whether we are in absolute alignment mode. It is
True when the flag f would be ‖ and False when it would be
∦. The tokenRel field stores a default indentation relation that
surrounds all terminals. For example, in Haskell, most terminals
are annotated with > in the grammar. Since requiring the user to
annotate every terminal with an indentation relation would be te-
dious and error prone, we can instead set tokenRel to Gt. Imple-
menting the localIndentation, absoluteIndentation, and
localTokenMode operators is then a simple matter of each opera-
tor modifying the IState according to the semantics in Figure 6.

The final consideration is how to thread this IState through
the parsing process and update it when a token is consumed. The
design of Parsec restricts the number of ways we can do this. The
type ParsecT is parameterized by the type of the input stream, s,
the type of the user state, u, the type of the underlying monad, m,
and the result type, a. We could store an IState in the user state,
u, and require the user to call some library function at the start of
every token that then updates the IState. However, that would be
a tedious and error prone process. On the other hand, for parsers
that use Parsec’s LanguageDef abstraction, adding the check to
the lexeme combinator would handle many cases, but even then,
many primitive operators such as char, digit, and satisfy do
not use lexeme so we would have to be careful to also add checks
to such primitives.

9 2014.6.25.1074



A more robust solution is to update the IState every time
Parsec reads a token from the input. Parsec reads tokens using
the uncons operation of the Stream class shown in Figure 13.
Unfortunately, within this class we do not have access to the user
state, u, and thus cannot store the IState there. We must store
the IState in either the stream, s, or the monad, m. Normally,
the monad would be the natural place to store it. However, the
choice operator, 〈|〉, in Parsec does not reset the monad when the
left-hand side fails. Thus any changes to the state made by the
left-hand side would be seen in the parser for the right-hand side.
This is not what we want. The IState used in the right-hand
side should be the original one before any changes were made
by the left-hand side. The Stream, s, is the only place where
we can store the IState. Thus in Figure 14 we define a new
stream type, IStream, that takes a stream of tokens paired with
indentations and calls updateIndentation whenever a token is
read by uncons. Given the current IState, is, the indentation of
the current token, i, and success and failure continuations, ok and
err, updateIndentation computes whether i is in the current
indentation set. If it is, updateIndentation calls ok with a new
IState, is’, that is updated according to the semantic rule for
terminals from Figure 6. Otherwise, it calls err. This ensures that
updateIndentation is called for every terminal and properly
backtracks for operators such as 〈|〉.

Due to limitations of the Parsec interface, storing the IState
here does have a significant drawback, however. In uncons there
is no way to signal a parse error except by returning Nothing.
Signaling some sort of error in the monad, m, will not work. Since
m is the monad inside ParsecT and not the ParsecT monad itself,
the error will not be caught by combinators such as 〈|〉 that should
try alternatives when an indentation check fails.

Returning Nothing achieves the desired integration with the
Parsec combinators, but it is not an ideal solution as that is also the
signal for the end of a Stream. Since invalid indentation and input
exhaustion are conflated, a parse could appear to finish and con-
sume all of its input when it has merely met an invalidly indented
token. Another problem is that if a parse fails due to an invalid
indentation, the error message will be one for input exhaustion in-
stead of one for an indentation violation. To remedy this problem,
it is important to run localTokenMode (const Any) eof at the
end of the parse to detect this situation and report an appropriate
error message.

Alternative solutions would be to have the user insert explicit
indentation checks or change the design of Parsec to allow uncons
to signal errors other than input exhaustion. The latter option would
require changes to Parsec as a whole but would make Parsec more
flexible and is relatively straightforward.

6. Benchmarks

In order to test the practicality of this implementation of indenta-
tion sensitivity on a real-word language we converted the Idris 0.9.8
compiler to use our parsing library. While a Haskell compiler
would have been a natural choice, in order to get a meaningful per-
formance comparison, we needed to modify a language implemen-
tation that was already based on Parsec. The only Haskell imple-
mentation we found that does this is Helium, but Helium supports
only a subset of Haskell forms. After considering several options,
we chose Idris as its parser is based on Parsec and uses syntax and
layout rules similar to those of Haskell.3

3 More recent versions of Idris use Trifecta instead of Parsec. We have
successfully ported our implementation to also work with Trifecta and used
the resulting library to parse Idris code. However, that port is still in its
infancy, and we do not have benchmark results for it yet.

102 103 104
0

1

2

3

4

5

File size (bytes)

R
el

at
iv

e
pa

rs
e

ti
m

e
(n

ew
/o

ld
)

Figure 15. Initial benchmark results

6.1 Implementation

Porting Idris to use our library was straightforward. The changes
mainly consisted of replacing the ad hoc indentation operators in
the original Idris parser with our own combinators. Since our com-
binators are at a higher level of abstraction, this significantly sim-
plified the parts of the Idris parser relating to indentation. In the
core Idris grammar, approximately two hundred lines are dedicated
to indentation. Those were replaced with half that many lines in our
new system. In addition, this conversion fixed some rather signif-
icant bugs in how Idris’s parser handles indentation. We describe
these bugs in Section 6.3.

6.2 Testing

In order to test the performance of our parser, we tested it on Idris
programs collected from a number of sources. These include:

– the Idris 0.9.8 standard library (Brady 2013e);

– the Idris 0.9.8 demos (Brady 2013c);

– the Idris-dev examples, benchmarks, and tests (Brady 2013d);

– the IdrisWeb web framework (Fowler 2013);

– the WS-idr interpreter (Brady 2013b);

– the bitstreams library (Saunders 2013); and

– the lightyear parsing library (Tejiščák 2013).

First, we tested that our parser produced the same abstract syntax
trees as the original parser. In a few cases, it did not, but when
we investigated, we found that these were all due to bugs in the
implementation of indentation in the original Idris parser. In all
other cases, we produced the same results as the original Idris
parser.

Next, we benchmarked both parsers using Criterion (O’Sullivan
2012). The benchmarks were compiled with GHC 7.6.3 and the
-O compilation flag. They were run on a 1.7GHz Intel Core i7
with 6GB of RAM running Linux 3.11.10. The results of our
benchmarks are shown in Figure 15. For each parsed file, we plot
the parse time of our new parser relative to Idris’s original parser.
Our parser ranged from 1.67 to 2.65 times slower than the original
parser and averaged 1.95 times slower.

6.3 Analysis

One of the reasons our parser is slower is that, like Idris’s original
parser, we are scannerless. Thus, uncons checks the indentation
of every single character of input. This is unlike Idris’s original

10 2014.6.25.1074



102 103 104
0

1

2

3

4

5

File size (bytes)

R
el

at
iv

e
pa

rs
e

ti
m

e
(n

ew
/o

ld
)

Figure 16. Benchmark results with modified indentation checks

parser, which checks the indentation at only certain manually-
chosen points. As a result, however, the original parser has some
significant bugs in how it handles indentation. In fact, we found
several examples of Idris code that were erroneously parsed by the
original parser. For example, in IdrisWeb we found the following
code.

expr = do t <- term
do symbol "+"

e <- expr
pure $ t + e

‘mplus‘ pure t

In this example, mplus occurs an an indentation that should cause
it to be parsed as being outside both do expressions. The original
Idris parser, however, does not check the indentation of the mplus
lexeme. As a result, mplus is parsed as part of the last statement in
the inner do expression. Since our new parser checks the indenta-
tion of every character, it does not have this problem.

In order to determine how much of the performance difference
is due to this difference in where checks occur, we modified the
original Idris parser to check all lexemes and our parser to check
once per lexeme instead of once per character. We then reran the
benchmarks. The Idris parser took on average 1.50 times what it did
before, and our parser took on average 0.82 times what it did before.
The relative performance of these modified parsers is plotted in
Figure 16. Similar to before, for each parsed file, we plot the parse
time of our parser relative to the Idris parser. Our parser ranged
from 0.77 to 1.48 times slower than the original parser and averaged
1.07 times slower. Thus, once we account for the differences in
where indentation checks occur, the performance of our parser is
on par with that of Idris’s parser.

7. Related Work

As discussed in Section 3.1.1, due to circularities introduced by
parse-error(x), the parsing technique that uses an L function
as described in the Haskell language specification (Marlow (ed.)
2010) is generally not used by practical implementations. Instead,
GHC and Hugs use shared state to coordinate between the lexer
and parser. This relies on “some mildly complicated interactions
between the lexer and parser” (Jones 1994) and is tricky to use.
The resulting code is difficult to reason about, and minor changes to
error propagation in the parser can affect parse results. Even worse,
this technique embeds assumptions about the L function and does
not easily generalize to other indentation rules.

The uulib parser library (Swierstra 2011) implements indenta-
tion using a similar approach, but it uses some intricate code involv-
ing continuations to handle the circularity between the lexer and
parser. Like the previous approach, this is hard coded to Haskell-
style indentation and cannot easily handle other layout rules.

The indents (Anklesaria 2012) library is an extension to
Parsec that provides a combinator to store the current position
in a monad for later reference. It then provides combinators to
check that the current position is on the same line, the same
column, or a greater column than that reference position. The
indentparser (Kurur 2012) library is similar but abstracts over
the type of the reference position. This allows more information to
be stored than in indents at the cost of defining extra data types.
In both systems, the user must explicitly insert indentation checks
in their code. The resulting code has a much more operational feel
than in our system. In addition, since these checks are added at
only certain key points, the sorts of bugs discussed in Section 6.3
can easily arise. To the best of our knowledge there is no pub-
lished, formal theory for the sort of indentation that these libraries
implement.

Hutton (1992) describes an approach to parsing indentation-
sensitive languages that is based on filtering the token stream. This
idea is further developed by Hutton and Meijer (1996). In both
cases, the layout combinator searches the token stream for appro-
priately indented tokens and passes only those tokens to the com-
binator for the expression to which the layout rule applies. As each
use of layout scans the remaining tokens in the input, this can lead
to quadratic running time. Given that the layout combinator filters
tokens before parsing occurs, this technique also cannot support
subexpressions, such as parenthesized expressions in Python, that
are exempt from layout constraints. Thus, this approach is inca-
pable of expressing many real-world languages including ISWIM,
Haskell, Idris, and Python.

Erdweg et al. (2012) propose a method of parsing indentation-
sensitive languages by effectively filtering the parse trees generated
by a GLR parser. The GLR parser generates all possible parse trees
irrespective of layout. Indentation constraints on each parse node
then remove the trees that violate the layout rules. For performance
reasons, this filtering is interleaved with the execution of the GLR
parser when possible.

Our paper is an extension of the work in Adams (2013), but
where that work focused on bottom-up, LR(k) parsing, this paper
considers top-down parsing in Parsec and PEG.

Brunauer and Mühlbacher (2006) take a unique approach to
specifying the indentation-sensitive aspects of a language. They use
a scannerless grammar that uses individual characters as tokens and
has non-terminals that take an integer counter as parameter. This
integer is threaded through the grammar and eventually specifies
the number of spaces that must occur within certain productions.
The grammar encodes the indentation rules of the language by
carefully arranging how this parameter is threaded through the
grammar and thus how many whitespace characters should occur
at each point in the grammar.

While encoding indentation sensitivity this way is formally pre-
cise, it comes at a cost. The YAML specification (Ben-Kiki et al.
2009) uses the approach proposed by Brunauer and Mühlbacher
(2006) and as a result has about a dozen and a half different non-
terminals for various sorts of whitespace and comments. With this
encoding, the grammar cannot use a separate tokenizer and must
be scannerless, each possible occurrence of whitespace must be ex-
plicit in the grammar, and the grammar must carefully track which
non-terminals produce or expect what sorts of whitespace. The au-
thors of the YAML grammar establish naming conventions for non-
terminals that help manage this, but the result is still a grammar that
is difficult to comprehend and even more difficult to modify.

11 2014.6.25.1074



8. Conclusion

This paper extends previous work on grammatical formalisms for
indentation-sensitive languages to handle the top-down, combinator-
based Parsec parsing framework. The resulting formalism is both
expressive and easy to use. We use the connection between the
semantics of PEG and Parsec to define a formal semantics for in-
dentation sensitivity in these frameworks. Experiments on an Idris
parser using this formalism show that, due to differences in how of-
ten the indentation is checked, the parser runs about twice as slow
as a parser using ad hoc techniques. Once the differences in how
often indentation is checked are eliminated, our technique performs
on par with the ad hoc techniques. The resulting library is available
on Hackage as the indentation package and provides convenient
indentation-sensitivity for Parsec-based parsers.

References

Michael D. Adams. Principled parsing for indentation-sensitive languages:
revisiting landin’s offside rule. In Proceedings of the 40th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’13, pages 511–522, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1832-7. .

Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,

and compiling, volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1972.
ISBN 0-13-914556-7.

Sam Anklesaria. indents version 0.3.3, May 2012. URL http://
hackage.haskell.org/package/indents/.

Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup

Language (YAML) Version 1.2, 3rd edition, October 2009. URL http:
//www.yaml.org/spec/1.2/spec.html.

Edwin Brady. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Program-

ming, 23(05):552–593, September 2013a. ISSN 1469-7653. .

Edwin Brady. Ws-idr, February 2013b. URL
https://github.com/edwinb/WS-idr. Commit
db65516b87863fcc0b066d26cb262bcddfff5514.

Edwin Brady. idris-0.9.8-demos, December 2013c. URL
https://github.com/edwinb/idris-demos. Commit
9c1355445dee0a41e6850a9c8d33cb0f2072cf78.

Edwin Brady. idris-0.9.8-examples-benchmarks-tests, December 2013d.
URL https://github.com/idris-lang/Idris-dev. Commit
869564663b8309a4984ba8ad700baf7b65c926bb.

Edwin Brady. idris-0.9.8-stdlib, January 2013e. URL
https://github.com/idris-lang/Idris-dev. Commit
a3c8020d50def27d7e1eb01d0ec8e10a00e9b90e.

Leonhard Brunauer and Bernhard Mühlbacher. Indentation sen-
sitive languages. Unpublished manuscript, July 2006. URL
http://www.cs.uni-salzburg.at/~ck/wiki/uploads/
TCS-Summer-2006.IndentationSensitiveLanguages/.

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Oster-
mann. Layout-sensitive generalized parsing. In Software Language En-

gineering, Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2012. URL http://sugarj.org/layout-parsing.pdf. To
appear.

Bryan Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’04, pages 111–
122, New York, NY, USA, 2004. ACM. ISBN 1-58113-729-X. .

Simon Fowler. idrisweb, December 2013. URL https:
//github.com/idris-hackers/IdrisWeb. Commit
0c823ff5af0fd9f04b66d05a138585acdc656722.

The Glorious Glasgow Haskell Compilation System User’s Guide, Version

7.2.1. The GHC Team, August 2011. URL http://www.haskell.
org/ghc/docs/7.2.1/html/users_guide/.

David Goodger. reStructuredText Markup Specification, January
2012. URL http://docutils.sourceforge.net/docs/ref/rst/
restructuredtext.html. Revision 7302.

John Gruber. Markdown: Syntax. URL http://daringfireball.net/
projects/markdown/syntax. Retrieved on June 24, 2012.

Michael Hanus (ed.). Curry: An integrated functional logic language
(version 0.8.2). Technical report, March 2006. URL http://www.
informatik.uni-kiel.de/~curry/report.html.

HASP Project. The Habit programming language: The revised prelim-
inary report, November 2010. URL http://hasp.cs.pdx.edu/
habit-report-Nov2010.pdf.

Graham Hutton. Higher-order functions for parsing. Journal of Functional

Programming, 2(03):323–343, July 1992. .

Graham Hutton and Erik Meijer. Monadic parser combinators. Technical
Report NOTTCS-TR-96-4, Department of Computer Science, Univer-
sity of Nottingham, 1996.

INMOS Limited. occam programming manual. Prentice-Hall international
series in computer science. Prentice-Hall International, 1984. ISBN 978-
0-13-629296-8.

Mark P. Jones. The implementation of the Gofer functional programming
system. Research Report YALEU/DCS/RR-1030, Yale University, New
Haven, Connecticut, USA, May 1994.

Piyush P. Kurur. indentparser version 0.1, January 2012. URL http:
//hackage.haskell.org/package/indentparser/.

P. J. Landin. The next 700 programming languages. Communications of the

ACM, 9(3):157–166, March 1966. ISSN 0001-0782. .

Daan Leijen and Paolo Martini. parsec version 3.1.3, June 2012. URL
http://hackage.haskell.org/package/parsec/.

Simon Marlow (ed.). Haskell 2010 Language Report, April 2010. URL
http://www.haskell.org/onlinereport/haskell2010/.

Egil Möller. SRFI-49: Indentation-sensitive syntax, May 2005. URL
http://srfi.schemers.org/srfi-49/srfi-49.html.

Bryan O’Sullivan. Criterion version 0.6.0.1, January 2012. URL http:
//hackage.haskell.org/package/criterion/.

Python. The Python Language Reference. URL http://docs.python.
org/reference/. Retrieved on June 26, 2012.

Benjamin Saunders. bitstreams, August 2013. URL
https://github.com/Ralith/bitstreams. Commit
b4da0ea346d506e7fd9fc7b2c9637281addec9ba.

S. Doaitse Swierstra. uulib version 0.9.14, August 2011. URL http:
//hackage.haskell.org/package/uulib/.

Don Syme et al. The F# 2.0 Language Specification. Microsoft Corporation,
April 2010. URL https://research.microsoft.com/en-us/um/
cambridge/projects/fsharp/manual/spec.html. Updated April
2012.

Matúš Tejiščák. lightyear, December 2013. URL
https://github.com/ziman/lightyear. Commit
d74e48ad13451e763250ec1412989fdebe7af66a.

D. A. Turner. Miranda System Manual. Research Software Lim-
ited, 1989. URL http://www.cs.kent.ac.uk/people/staff/
dat/miranda/manual/.

Philip Wadler. An introduction to Orwell. Technical report, Programming
Research Group at Oxford University, 1985.

12 2014.6.25.1074

http://hackage.haskell.org/package/indents/
http://hackage.haskell.org/package/indents/
http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://github.com/edwinb/WS-idr
https://github.com/edwinb/idris-demos
https://github.com/idris-lang/Idris-dev
https://github.com/idris-lang/Idris-dev
http://www.cs.uni-salzburg.at/~ck/wiki/uploads/TCS-Summer-2006.IndentationSensitiveLanguages/
http://www.cs.uni-salzburg.at/~ck/wiki/uploads/TCS-Summer-2006.IndentationSensitiveLanguages/
http://sugarj.org/layout-parsing.pdf
https://github.com/idris-hackers/IdrisWeb
https://github.com/idris-hackers/IdrisWeb
http://www.haskell.org/ghc/docs/7.2.1/html/users_guide/
http://www.haskell.org/ghc/docs/7.2.1/html/users_guide/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
http://www.informatik.uni-kiel.de/~curry/report.html
http://www.informatik.uni-kiel.de/~curry/report.html
http://hasp.cs.pdx.edu/habit-report-Nov2010.pdf
http://hasp.cs.pdx.edu/habit-report-Nov2010.pdf
http://hackage.haskell.org/package/indentparser/
http://hackage.haskell.org/package/indentparser/
http://hackage.haskell.org/package/parsec/
http://www.haskell.org/onlinereport/haskell2010/
http://srfi.schemers.org/srfi-49/srfi-49.html
http://hackage.haskell.org/package/criterion/
http://hackage.haskell.org/package/criterion/
http://docs.python.org/reference/
http://docs.python.org/reference/
https://github.com/Ralith/bitstreams
http://hackage.haskell.org/package/uulib/
http://hackage.haskell.org/package/uulib/
https://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
https://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
https://github.com/ziman/lightyear
http://www.cs.kent.ac.uk/people/staff/dat/miranda/manual/
http://www.cs.kent.ac.uk/people/staff/dat/miranda/manual/

	Introduction
	The Basic Idea
	Parsing Expression Grammars
	Indentation Sensitivity

	Indentation-Sensitive Languages
	Haskell
	Language
	Grammar

	Python
	Language
	Grammar


	Parsing Expression Grammars
	Parsing Expression Grammars
	Indentation Sensitivity
	Example Derivation

	Parsec
	Parsec Internals
	Indentation Sensitivity

	Benchmarks
	Implementation
	Testing
	Analysis

	Related Work
	Conclusion
	References

