
Functional Pearl: Scrap Your Zippers

Michael D. Adams
Indiana University

adamsmd@cs.indiana.edu

Abstract
The “zipper” data type provides the ability for editing tree shaped
data in a pure functional setting and has found many uses and appli-
cations. However the traditional zipper has two major limitations.
First, requires a significant amount of boilerplate code to imple-
ment. Second, it can only operate on homogeneous data types. Data
structures where there are multiple node types are beyond the range
of what it can handle.

The generic zipper developed in this paper solves both these
issues while maintaining type safety. It does this by encoding the
path to the current position in the type of the zipper and by keeping
an abstract representation of the object being traversed The tech-
niques used develop the generic zipper also prove to have uses for
other problems which will be briefly explored.

Categories and Subject DescriptorsD.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; E.1 [Data]: Data
Structures

Keywords Zipper, boilerplate, generalized abstract data types

1. Introduction
The data structure known as the “zipper” [4] for provides the ability
to edit tree shaped data in a purely functional setting. It has been
used to implement filesystems [5] and even window managers [12].
In fact, any situation where there is a well defined focal point for
edits the zipper may find applicability. In a text-editor this focal
point is manifest as the cursor. In a filesystem it is manifest as the
current working directory, and in a window manager as the window
with focus.

Perhaps even more important than the broad applicability of
the zipper is the fact that creating a zipper for a specific data
type is a very straightforward, mechanical process [1, 9] which if
done properly ensures correctness by construction for all editing
operations.

However, the traditional zipper suffers from two major issues.
The first is that it is limited to operating over homogeneous data
types. That is, each node in the tree on which the zipper is oper-
ating must be of the same type. Thus, while the zipper may work
wonderfully at making edits to the abstract syntax tree of a lambda-
calculus interpreter, it provides little help when it comes time to edit
the more complex abstract syntax trees that would be necessary to

[Copyright notice will appear here once ’preprint’ option is removed.]

implement languages that support things like types and statements
in addition to simple expressions.

The second issue is the same problem that any piece of code
written in a mechanical way has. It shouldn’t have to be written in
the first place! At least not by a human. Boilerplate code can be
monotonous to write and hard to maintain as the data type it is for
evolves. A tool could be written to generate the code implementing
the zipper from the data type, but it would be better if we could
avoid adding this sort of meta-level to our code.

The techniques described in the “Scrap your boilerplate” papers
[6, 7, 8] are designed to solve precisely these sort of issues, but
these techniques are not a perfect fit. They are designed with all-
at-once traversals in mind, but the zipper by its very nature is an
incremental data structure. Excessive use of thecast operator from
those papers can arrive at a solution of sorts, but at a steep cost.
Depending on whether thecast was to the correct type, it might
fail. So every piece of code that contains acastmight also possibly
fail.

The “generic zipper” presented in this paper overcomes all these
issues. It operates over any data type regardless of whether it is
homogeneous or not. The only proviso is that it must be an instance
of the Data class. Further, all of the standard zipper operations
(get_value, set_value, move_left, move_right, move_up)
with the exception ofmove_down are total functions. They will
never fail.

The generic zipper achieves this by putting information about its
position into its type. Generalized Algebraic Data Types (GADTs)
[11, 10] make this possible. Nevertheless, even without GADTs
the techniques developed for the generic zipper prove to have
independent value for implementing other, similar data structures.

The remainder of this paper is divided as follows. Section re-
views 2 the traditional implementation of the zipper. Sections 3 and
4 respectively present the use and implementation of the generic
zipper. Section 5 briefly covers how the techniques developed in
this paper may be applied to problems beyond the zipper, and fi-
nally section 6 concludes.

2. Using the Traditional Zippers
The zipper is made up of two parts: a hole and a context. The hole is
the portion of the object that is rooted at the current position of the
zipper within the overall object. The context contains the overall
object but with the hole missing. It also implicitly contains the path
from the hole to the root of the overall object using pointer reversal.

To see how this works for the traditional zipper we will follow
the development in [1] before moving on to the main topic of this
paper, the generic zipper. The following is an abstract syntax tree
for a hypothetical language.

data Term
= Var String
| Lambda String Term
| App Term Term

1 2007/6/16



| If Term Term Term

To define a zipper for this type, aTermContext type needs
to be defined. For each constructor inTerm and each recursive
child component of that constructor, theTermContext type needs
to have a constructor which allows that child component to be
missing. For example, in a one-hole context anIf constructor could
be missing either its first, second or third child, andApp could be
missing either of its two children. Since with the traditional zipper
we are forced to operate over homogeneous types. TheString
argument toLambda can’t be considered a child, soLambda can
only be missing its second argument. Finally,Var has noTerm
children so it can’t contain a hole.

data TermContext
= TermRoot
| Lambda_1 String TermContext
| App_1 TermContext Term
| App_2 Term TermContext
| If_1 TermContext Term Term
| If_2 Term TermContext Term
| If_3 Term Term TermContext

In place of each of these holes the constructors ofTermContext
points to the context parent of the current context which in turn
points its own parent and so on until the root of the object is reached
with TermRoot.

The declaration for forTermZipper is then:

type TermZipper = (Term, TermContext)

Moving down aTermZipper is implemented by pulling apart
the current hole, extracting the first child and extending the current
context with the children other than the first child. This is imple-
mented byterm_down.

term_down (Var s, c) = error "can’t go down"
term_down (Lambda s t1, c) = (t1, Lambda_1 s c)
term_down (App t1 t2, c) = (t1, App_1 c t2)
term_down (If t1 t2 t3, c) = (t1, If_1 c t2 t3)

Moving up the zipper is simply the reverse of that process. The
siblings of the current hole get combined with the current hole
to form a new hole and the parent context becomes the current
context. The portion ofterm_up dealing withIf contexts is shown
here. A full implementation would have a case for each constructor
in TermContext.

term_up (t1, If_1 c t2 t3) = (If t1 t2 t3, c)
term_up (t2, If_2 t1 c t3) = (If t1 t2 t3, c)
term_up (t3, If_3 t1 t2 c) = (If t1 t2 t3, c)

Moving left and right in a zipper are both very similar to each
other. They each take the current hole and replace it with the sibling
immediately to either the left or the right. Again, for the sake of
brevity only parts ofmove_left andmove_right dealing withIf
terms are shown here:

term_left (t1, If_1 c t2 t3) = error "bad left"
term_left (t2, If_2 t1 c t3) = (t1, If_1 c t2 t3)
term_left (t3, If_3 t1 t2 c) = (t2, If_2 t1 c t3)

term_right (t1, If_1 c t2 t3) = (t2, If_2 t1 c t3)
term_right (t2, If_2 t1 c t3) = (t3, If_3 t1 t2 c)
term_right (t3, If_3 t1 t2 c) = error "bad right"

All that remains are the three functionsterm_begin (which
constructs and initial zipper),term_get (which gets the value of
the current hole), andterm_set (which sets the value of the current
hole):

term_begin t = (t, TermRoot)
term_get (t, _) = t
term_set h (_, c) = h

To see the zipper used in practice, consider the following hypo-
thetical definition for the body of a factorial implementation.

fac = Lambda "n"
(If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")
(App (App (Var "+") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

Notice that this definition contains a bug. The+ operator was
incorrectly used instead of* in this definition. We can use the
zipper as shown in the following interaction to fix this.

*Main> let t0 = term_begin fac
*Main> term_get t0

Lambda "n"
(If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")
(App (App (Var "+") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

*Main> let t1 = term_down t1
*Main> term_get t1

(If (App (App (Var "=") (Var "n")) (Var "0"))
(Var "1")
(App (App (Var "+") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

*Main> let t2 = term_down t1
*Main> term_get t2

(App (App (Var "=") (Var "n")) (Var "0"))

*Main> let t3 = term_right t2
*Main> term_get t3

(Var "1")

*Main> let t4 = term_right t3
*Main> term_get t4

(App (App (Var "+") (Var "n"))
(App (Var "fac")

(App (Var "pred") (Var "n")))))

*Main> let t5 = term_down t4
*Main> term_get t5

(App (Var "+") (Var "n"))

*Main> let t6 = term_down t5
*Main> term_get t6

(Var "+")

*Main> let t7 = term_set (Var "*") t6
*Main> let t8 = term_up t7
*Main> term_get t8

2 2007/6/16



(App (Var "*") (Var "n"))

3. Using the Generic Zipper
While the traditional zipper works fine for homogeneous types like
Term, it runs into problems for more complex types Consider for
example a data type to represent a department:

data Dept = D Manager [Employee]
deriving (Show, Typeable, Data)

data Employee = E Name Salary
deriving (Show, Typeable, Data)

type Salary = Float
type Manager = Employee
type Name = String

Now we have to separate data types,Dept andEmployee, that
we would like to traverse over instead of just the one type that
Term had. This particular case is fairly simple, but situations like
this happen fairly often. For example, a compiler may have an
abstract syntax tree that represents statements and types in addition
to expressions. The traditional zipper has no way to handle this.
The generic zipper on the other hand will work just fine for this as
well as any other generic data type. On top of this, it requires no
boilerplate code on the user’s part. Instead of writingdown, left,
right andup functions, the data type only needs to derive from
theData type class which is provided as part of GHC’s libraries.

Here is a small example department:

company :: Dept
company =

D agamemnon [menelaus, achilles, odysseus]

agamemnon, menelaus, achilles, odysseus
:: Employee

agamemnon = E "Agamemnon" 5000
menelaus = E "Menelaus" 3000
achilles = E "Achilles" 2000
odysseus = E "Odysseus" 2000

Now suppose Agamemnon decides that his employee record
should really refer to him as ”King” Agamemnon. We want to edit
company, so we initialize a generic zipper withbegin_zipper.

*Main> let g1 = begin_zipper company
*Main> :type g1

g1 :: Zipper (Up (Top, Dept, Top) Top)

The type of the zipper encodes the types of the objects in the
current path and the types of the current hole’s siblings. TheTop
type serves as a terminator for this encoding. In this case the type
indicates that there are that no siblings to the left (the firstTop),
and that the current hole is aDept. Also there are no siblings to the
right (the secondTop), and the zipper is at the root of the object
thus having no parents (the thirdTop).

The contents of this zipper can be retrieved withget_hole.
Since the zipper is still in its initialized state, the hole has the value
of the original object.

*Main> get_hole g1

D (E "Agamemnon" 5000.0)
[E "Menelaus" 3000.0,
E "Achilles" 2000.0,
E "Odysseus" 2000.0]

The generic zipper contains information about the current path,
but it doesn’t have any information about the types of the current
hole’s children. After all, that depends on which constructor is in
the current hole.

This means that in order to move down the structure, we have to
supply that extra type information. The zipper will verify whether
that information is correct (using the generic type-safecast op-
erator) and returnJust if it was correct. Otherwise it will return
Nothing. If the user passes the constructor of the current hole to
move_down’, it can infer the needed parts of the type from the type
of the constructor. (The full version ofmove_down allows the user
to specify the expected type explicitly, but since the type of the
path can get complicated rather quickly, themove_down’ wrapper
function is often easier to use.)

*Main> isJust (move_down’ g1 D)

True

*Main> let Just g2 = move_down’ g1 D
*Main> :type g2

g2 :: Zipper
(Up (Top -> Employee, [Employee], Dept)
(Up (Top, Dept, Top)
Top))

*Main> get_hole g2

[E "Menelaus" 3000.0,
E "Achilles" 2000.0,
E "Odysseus" 2000.0]

The type ofg2 in this example indicates that the current hole is a
[Employee], there is oneEmployee sibling to the left and none to
the right, and that the parent is aDept. Note that the generic zipper
has descended to the right-most child as opposed to the traditional
left-most child. This makes the internal implementation easier,
but the upshot of this is that Agamemnon’s record is the current
zipper’s left sibling. The next thing we have to do ismove_left.

*Main> let g3 = move_left g2
*Main> :type g3

g3 :: Zipper
(Up (Top, Employee, [Employee] -> Dept)
(Up (Top, Dept, Top)
Top))

*Main> get_hole g3

E "Agamemnon" 5000.0

Now the current hole is Agamemnon’sEmployee record and
there is one[Employee] sibling to the right. Moving down once
more and moving to the left will get us to theName part of his
record.

*Main> let Just g4 = move_down’ g3 E
*Main> :type g4

g4 :: Zipper
(Up (Top -> [Char], Float, Employee)
(Up (Top, Employee, [Employee] -> Dept)
(Up (Top, Dept, Top)
Top)))

3 2007/6/16



*Main> get_hole g4

5000.0

*Main> let g5 = move_left g4
*Main> :type g5

g5 :: Zipper
(Up (Top, [Char], Float -> Employee)
(Up (Top, Employee, [Employee] -> Dept)
(Up (Top, Dept, Top)
Top)))

*Main> get_hole g5

"Agamemnon"

We can change the value of the current hole withset_hole.
While we’re at it, let’s also move to the right and give the king a
raise.

*Main> let g6 = set_hole "King Agamemnon" g5
*Main> let g7 = move_right g6
*Main> let g8 = set_hole 8000 g7

Every one of these operations is completely type-safe, and with
the exception ofmove_down none of them have any failure modes.
Compare this with the traditional zipper where moving to far to the
left or right could throw an error. The generic zipper can prevent
this from happening because it has in its type signature the needed
information about how many and what type of siblings there are.
Attempting to move too far, results in a type error at compile time.

*Main> :type move_right g8

<interactive>:1:11:
Couldn’t match expected type ‘h_new -> r’

against inferred type ‘Employee’
Expected type: Zipper

(Up (Top -> [Char], Float, h_new -> r) up)
Inferred type: Zipper

(Up (Top -> [Char], Float, Employee)
(Up (Top, Employee, [Employee] -> Dept)
(Up (Top, Dept, Top)
Top)))

In the first argument of ‘move_right’, namely ‘g8’

If we traverse up the zipper, we can verify that the changes we
made took the proper effect:

*Main> let g9 = move_up g8
*Main> :t g9

g9 :: Zipper
(Up (Top, Employee, [Employee] -> Dept)
(Up (Top, Dept, Top)
Top))

*Main> get_hole g9

E "King Agamemnon" 8000.0

Finally, by moving up once more we can retrieve the now
modified root object.

*Main> let g10 = move_up g9
*Main> :type g10

g10 :: Zipper (Up (Top, Dept, Top) Top)

*Main> get_hole g10

D (E "King Agamemnon" 8000.0)
[E "Menelaus" 3000.0,
E "Achilles" 2000.0,
E "Odysseus" 2000.0]

4. Generic Zippers
Just as with the traditional zipper, the generic zipper is made up of
a hole and a context. However, with the generic zipper as it moves
about within an object, the type of the hole may change. Thus we
must construct a type that is able to contain this variability in a type
safe manner.

This is done by theZipper GADT. it is almost trivial leaving
the hard work to theContext type. The only part it has to ensure
is that the value it contains for the hole matches the hole in the
context.

data Zipper path where
Zipper :: hole

-> Context (Up (left, hole, right) up)
-> Zipper (Up (left, hole, right) up)

The Context type does most of the work of keeping track of
keeping track of the types of siblings and parents. Since this type is
so complicated we will tackle it in parts. This is its general shape:

data Context path where
ContTop :: Context (Up (Top, a, Top) Top)
Cont :: Left l (...)

-> Right r (...)
-> Context (Up (l_parent, h_parent, r_parent)

path)
-> Context (Up (l, h, r)

(Up (l_parent, h_parent, r_parent)
path))

Except for the top-most context,ContTop, everyContext con-
tains a set of left siblings, right siblings and its parent context.

The parts marked by ellipses have been omitted for the moment.
They are what ensures that the parent’s hole,h_parent, is compat-
ible with the current hole,h, and sibling types,l andr. But before
those parts can be understood, we must consider how these siblings
will be represented.

4.1 Left Siblings

Consider the following preliminary draft of a type which could be
used to hold the left siblings of the current hole.

data BasicLeft a
= BasicLeftUnit a
| forall b. BasicLeftCons (BasicLeft (b -> a)) b

The key to this type is theBasicLeftCons constructor. Its
first argument is aBasicLeft that representsa partially applied
constructor of typeb -> a. This is packaged up with the second
argument of typeb. This packaging represents the application of the
former to the latter to construct an object of typea. Because it does
not actually perform the application (it merely represents it) theb
object can be re-extracted at a later time. These virtual applications
can be stacked together withBasicLeftCons. The base case for
this is the raw constructor before it has been applied to anything,
andBasicLeftUnit allows that to be handled.1

1 Readers familiar with [3] and [2] may recognize this type asSpine.
However, variants of this type that appear later in this paper have differences
that go beyond the work in [3] and [2]

4 2007/6/16



Understanding this type should be much clearer with an exam-
ple. Suppose for the moment that we want to useBasicLeft to
represent constructor applications of the typeFoo.

data Foo = Foo1 Int Char | Foo2 Float

To begin building aFoo object let’s start with theFoo1 construc-
tor. This is represented by the valueBasicLeftUnit Foo1. The
type for such a value isBasicLeft (Int -> Char -> Foo) .

Notice that the arguments thatFoo1 is expecting are made
manifest in the type ofBasicLeftCons. In the following examples
that part of the type signature guarantees that the arguments will be
of the proper type as eachBasicLeftCons is added.

*Main> :type BasicLeftUnit Foo1
‘BasicLeftCons‘ 1

it :: BasicLeft (Char -> Foo)

*Main> :type BasicLeftUnit Foo1
‘BasicLeftCons‘ 1
‘BasicLeftCons‘ ’a’

it :: BasicLeft Foo

*Main> :type BasicLeftUnit Foo2

it :: BasicLeft (Float -> Foo)

*Main> :type BasicLeftUnit Foo2
‘BasicLeftCons‘ 1.0

it :: BasicLeft Foo

The existentially quantified typeb in BasicLeftCons allows a
BasicLeft representing ana to contain whatever type of children
are necessary.2 The only requirement on the children is that they
match the type of the arguments to the constructor.

However, using an existential has a drawback. Since the value
of the type is hidden by the existential, the children must be treated
as opaque objects. This is a problem if we want to implement a
zipper, because when moving left, one of those hidden children will
become the new hole. What we need is a type that reflects not only
the types of theremainingarguments (asBasicLeft does), but
also the types of the already applied arguments.

Fortunately, this can be achieved with the following type.

data Left contains expects where
LeftUnit :: a -> Left Top a
LeftCons :: Left c (b -> a)

-> b
-> Left (c -> b) a

data Top
{- no constructors -}

Theexpects type parameter plays the same role as the param-
eter toBasicLeft did before. Thecontains parameter provides
an additional record of the types of the children already added
by LeftCons. Finally, theTop type provides a base case for the
contains argument.

With Left instead ofBasicLeft the previous example be-
comes:

*Main> :type LeftUnit Foo1

it :: Left Top (Int -> Char -> Foo)

2 GHC uses theforall keyword for existentials as well as universals. The
only distinction between the two is where it is positioned.

*Main> :type LeftUnit Foo1
‘LeftCons‘ 1

it :: Left (Top -> Int) (Char -> Foo)

*Main> :type LeftUnit Foo1
‘LeftCons‘ 1
‘LeftCons‘ ’a’

it :: Left ((Top -> Int) -> Char) Foo

*Main> :type LeftUnit Foo2

it :: Left Top (Float -> Foo)

*Main> :type LeftUnit Foo2
‘LeftCons‘ 1.0

it :: Left (Top -> Float) Foo

Theexpects parameter is the same as it was before, but now
the types of the children don’t disappear when theLeftCons is
applied.

4.2 Right Siblings

Representing the right siblings is very similar to how it was with
the left siblings. The major difference is that instead of the type
needing to encode what children the partial constructor application
expects, the type needs to encode what children itprovides.

data Right provides final where
RightNull :: Right final final
RightCons :: b

-> Right a final
-> Right (b -> a) final

(Thefinal parameter to this type does no useful work for now,
but will be used when we return to theContext type where it
will help ensure that the nodes in theZipper match that of their
surrounding context.)

If the children provided by aRight match the children expected
by a Left, we have enough to completely apply the constructor.
If the correspondingLeft already has all its arguments,Right
doesn’t need to provide any children. This case is represented by
RightNull. Children thatRight does provide are added with
RightCons.

*Main> :type RightNull

it :: Right final final

*Main> :type ’a’ ‘RightCons‘
RightNull

it :: Right (Char -> a) a

*Main> :type (1::Int) ‘RightCons‘
(’a’ ‘RightCons‘
RightNull)

it :: Right (Int -> Char -> a) a

The fact that in this example,final is left universally quantified
is slightly worrisome, but this will be soon rectified.

4.3 Combining Left and Right

Before returning to the problem of specifying a complete zip-
per context, consider how a matchingLeft and Right may be
combined. With a left portionLeft l r and a right portion

5 2007/6/16



Right r final, in principal there is enough information to con-
struct a completefinal. Since it will be useful later and in order
to make sure that matching upLeft and aRight in this way is
feasible we should try to write a function that constructs such a
final from a Left and aRight. But since we eventually want
to leave a hole,h, in the context, we will instead write a func-
tion that takes aLeft l (h -> r), anh and aRight r final.
The implementation of this function,collapse, proves to be quite
simple:

collapse :: Left l (h -> r) -> h -> Right r final
-> final

collapse l h r = total where
left = collapse_left l
mid = left h
total = collapse_right mid r

collapse_left :: Left l r -> r
collapse_left (LeftUnit a) = a
collapse_left (LeftCons f b) =

collapse_left f b

collapse_right :: r -> Right r final -> final
collapse_right f (RightNull) = f
collapse_right f (RightCons b r) =

collapse_right (f b) r

Notice how the thefinal parameter toRight behaves here.
From the way thatRight is defined, thefinal parameter will
always be always a suffix of theprovides parameter. Further, in
any call tocollapse theprovides parameter of theRight will
ber which is also theexpects parameter of theLeft. Sofinal
must match what is at the end of theexpects parameter, and this
is precisely the result type of the constructor. This eliminates the
problem withfinal being universally quantified seen in the earlier
example, and is crucial to the implementation ofContext.

4.4 Context

With both Left and Right defined, we can now return to the
Context type. Given a matchingLeft andRight, all that remains
to build a complete zipper context is the ability to point to a parent
context. That parent context must have a hole that matches the type
which could be constructed from theLeft and Right siblings.
This means that in order to maintain type correctness, the type of
the parent context must encode the type of the hole that the parent
context contains, as well as the types of the left and right siblings
that the parent context contains. And since the the parent context
itself has a parent context, by induction the current context’s type
will need to encode a complete path back to the root node.

At each point in this path there will be a left, a hole and a right
type. We will package these together with tuple type. These tuples
in turn will be linked together by the type constructorUp.

data Up a b
{- no constructors -}

As before, the typeTop will terminate such a chain. LikeTop,
the typeUp has no constructors because it operates as a phantom
type.

Putting all of this together theContext type may finally be
defined thusly:

data Context path where
ContTop :: Context (Up (Top, a, Top) Top)
Cont :: Left l (h -> r)

-> Right r h_parent
-> Context (Up (l_parent, h_parent, r_parent)

path)
-> Context (Up (l, h, r)

(Up (l_parent, h_parent, r_parent)
path))

While at first that data type may appear complicated, notice that
each argument to theCont constructor shares at least one type
parameter with one of the other arguments. TheLeft sharesr
with the Right, and theRight sharesh_parent with the parent
Context. This means that we can produce a newContext if we
have matchingLeft andRight siblings that combine to fill the
hole,h_parent, in the parentContext. Thepath of the resulting
Context is the path of the parentContext extended with the
current sibling and hole types.

A path such as

(Up (self_left, self_hole, self_right)
(Up (parent_left, parent_hole, parent_right)
(Up (grandparent_left,

grandparent_hole,
grandparent_right)

Top)))

would mean that the current zipper position has a left, hole and
right of self_left, self_hole and self_right respectively,
the parent of the current zipper position has a left, hole and right
of parent_left, parent_hole andparent_right respectively,
and the grandparent of the current zipper position has a left,
hole and right ofgrandparent_left, grandparent_hole and
grandparent_right respectively. Lastly, the grandparent of the
current zipper position has no further parents (signaled by the use
of Top) and is thus the root of the object which the zipper travers-
ing.

4.5 Zipper Operations

Implementing movement with theZipper is quite easy. The imple-
mentation ofmove_left simply requires pulling off aLeftCons
from the left part of the context and adding on aRightCons to the
right part of the context.

move_left :: Zipper (Up (l -> h_new, h_old, r) up)
-> Zipper (Up (l, h_new, h_old -> r) up)

move_left
(Zipper h_old (Cont (LeftCons l h_new) r up)) =
(Zipper h_new (Cont l (RightCons h_old r) up))

Doing the reverse gives usmove_right.

move_right :: Zipper (Up (l, h_old, h_new -> r) up)
-> Zipper (Up (l -> h_old, h_new, r) up)

move_right
(Zipper h_old (Cont l (RightCons h_new r) up)) =
(Zipper h_new (Cont (LeftCons l h_old) r up))

And reusing thecollapse function from before,move_up is
even easier.

move_up :: Zipper (Up child (Up self parent))
-> Zipper (Up self parent)

move_up (Zipper h (Cont l r up)) =
(Zipper (collapse l h r) up)

Finally, constructing a zipper from scratch withbegin_zipper,
getting the value of the current hole withget_hole, and setting
the value of the current hole withset_hole are all trivial wrappers
around theZipper constructors.

begin_zipper :: h -> Zipper (Up (Top, h, Top) Top)
begin_zipper a = Zipper a ContTop

6 2007/6/16



get_hole :: Zipper (Up (l, h, r) up) -> h
get_hole (Zipper h _) = h

set_hole :: h
-> Zipper (Up (l, h, r) up)
-> Zipper (Up (l, h, r) up)

set_hole h (Zipper _ context) = Zipper h context

4.6 Implementing Down

Up until now, none of the operations over theZipper had any
failure modes. The one remaining function,move_down, isn’t quite
so lucky. The previous functions could prevent failure by encoding
the types of the parents and siblings in the type of theZipper, but
nothing in the existingContext or Zipper types indicate types of
the children of the current node. There are a number of options that
could remedy this situation.

The first is to go ahead and add that information to the type of
theZipper. Unfortunately, this would end up requiring the types
of not just the immediate children, but of all descendants to be
encoded in the type of theZipper. While in some applications this
might be acceptable, in many this would unreasonably constrain
the type and shape of the data contained in theZipper.

For some data types there is a second option. If the type of the
children are always the same and are known in advance then an
implementation ofmove_down could be written which takes that
into account. With most data types this is not a viable option so we
seek a more general solution.

The last option is to usegfoldl from [6] which provides just
such generality but it does have a cost. The type signature of
gfoldl is

gfoldl :: (Data a)
=> (forall a1 b. (Data a1)

=> c (a1 -> b) -> a1 -> c b)
-- Lifted application

-> (forall g. g -> c g)
-- Constructor injection

-> a -- The object to be folded
-> c a

The semantics ofgfoldl are such that the call

gfoldl f k (Foo1 5 ’d’)

is equivalent to

((k Foo1) ‘f‘ 5) ‘f‘ ’d’

The gfoldl function removes the need for the caller to perform
case analysis or even know anything about the type being manipu-
lated.

However, the result type,c a, does not manifest any of the types
of the children that where folded over, andZipper needs those
types to construct the types of the current hole’s siblings. In order
to do this we must hide thecontains parameter ofLeft from the
gfoldl by wrapping it in the existential typeErase.

data Erase c a =
forall b. (Typeable b) => Erase (c b a)

Once thegfoldl is complete thecontains parameter is re-
exposed bycast (also from [6]). This function casts one type
to another, but returns its result wrapped aMaybe so that it can
produceNothing if the types are not compatible. Since such a
cast may fail withNothing, this introduces the possibility that
move_down could fail. This is a design trade-off compared to the
other options.

move_down ::
(Typeable l_down, Typeable h_down,
Typeable l, Data h, Typeable r, Typeable up)
=> Zipper (Up (l, h, r) up)
-> Maybe (Zipper (Up (l_down, h_down, h)

(Up (l, h, r) up)))
move_down (Zipper h c) =

case gfoldl erased_left_cons erased_left_unit h of
Erase l ->

case cast l of
Just (LeftCons l’ h_down) ->

Just (Zipper h_down (Cont l’ RightNull c))
Nothing -> Nothing

instance Typeable Top where
typeOf _ = mkTyConApp (mkTyCon "Top") []

instance Typeable2 Left where
typeOf2 _ = mkTyConApp (mkTyCon "Left") []

instance Typeable2 Up where
typeOf2 _ = mkTyConApp (mkTyCon "Up") []

The erased_left_cons and erased_left_unit functions
are simplyLeftCons andLeftUnit but with the first type con-
structor argument hidden byErase.

erased_left_cons :: (Typeable b)
=> Erase Left (b -> a)
-> b -> Erase Left a

erased_left_cons (Erase c) b =
Erase (LeftCons c b)

erased_left_unit :: a -> Erase Left a
erased_left_unit a = Erase (LeftUnit a)

This design concentrates everything about a zipper that could
fail into one function,move_down. The other functions will never
fail thanks to the constraints enforced by their type signatures.

Becausemove_down contains acast within it, the result type
is ambiguous and will be left with universally quantified type vari-
ables. Anything usingmove_downwould have to specify these vari-
ables in one way or another so the success or failure of thecast can
be determined. This means the user would have to put an explicit
type signature on each call tomove_down. Since the signature of a
call to move_down includes a full encoding of the path, requiring
the user to write it out would be a bit of a burden. The following
wrapper function provides a slightly easier alternative by inferring
the type variables from the type of the constructor that the user
claims is in the current hole.

move_down’ ::
(Typeable l_down, Typeable h_down,
Typeable l, Data h, Typeable r, Typeable up,
Foldl Top constr_type h (l_down -> h_down))
=> Zipper (Up (l, h, r) up)
-> constr_type
-> Maybe (Zipper (Up (l_down, h_down, h)

(Up (l, h, r) up)))
move_down’ z _ = move_down z

A call like move_down’ z Foo1 instructs themove_down’
function to assume that the the constructor of the current hole has
the same type signature asFoo1 and to infer the result type based
on that. If the constructor has a different type, thenmove_down’
will return Nothing just like move_down would have done if it
was called with the wrong signature.

7 2007/6/16



The purpose ofFoldl is to compute the proper values for
l_down andh_down from the provided constructor signature by
flipping from the usual right associative function arrows to the left
associative form needed byLeft.

class Foldl acc right stop left
| acc right stop -> left where

{- no methods -}

instance Foldl acc stop stop acc where
{- no methods -}

instance Foldl (acc -> a) b stop left
=> Foldl acc (a -> b) stop left where

{- no methods -}

Despite its brevity, the definition ofFoldl may be a bit chal-
lenging to understand. The motivated reader is encouraged to work
through what value forleft would be calculated by the functional
dependencies inFoldl in order to satisfy the constraint

Foldl Top (a -> b -> c -> d) d left

In any caseFoldl is used only bymove_down’ and so is not
essential to the other parts of this paper.

5. Beyond Zippers
Though the implementation of the genericZipper relies heavily on
GADTs, the technique of defining a data type that acts as a stand-in
for applying a constructor to its arguments has broader applications
even without GADTs. The originalBasicLeft provided just such
a stand-in but avoiding the use of GADTs. It was not sufficient to
implement the generic zipper, but with a few modifications it has
other uses.

What would happen if the second argument ofBasicLeft
where more than just ab? What if that argument were wrapped
inside something such as aMaybe, an Either or a tuple? Or in
anotherBasicLeft?

The Annotate type is the general form of these scenarios.
With an Annotate m, eachb is wrapped inside anm, and with
FixAnnotate m, eachb gets further wrapped inside yet another
FixAnnotate. This effectively means every point in an algebraic
data structure gets wrapped by anm from the top all the way down
to the leaves.

newtype FixAnnotate m a
= FixA (m (FixAnnotate’ m a))

type FixAnnotate’ m a
= Annotate (FixAnnotate m) a

data Annotate m a
= AnnotateUnit a
| forall b. (Data b) =>

AnnotateCons (Annotate m (b -> a))
(m b)

instance (Typeable1 m) =>
Typeable1 (Annotate m) where

typeOf1 _ = mkTyConApp
(mkTyCon "Annotate")
[typeOf1 (undefined :: m ())]

instance (Typeable1 m) =>
Typeable1 (FixAnnotate m) where

typeOf1 _ = mkTyConApp
(mkTyCon "FixAnnotate")

[typeOf1 (undefined :: m ())]

If m is a Maybe, this allows any node within a data type to be
either present as aJust or missing as aNothing. If Either were
used instead then any node could use an alternate set of constructors
beyond those in the original data type being represented. Another
possibility would be to use a tuple type so all the nodes would be
annotated with some extra information but without replacing the
existing value. TheAnnotate andFixAnnotate types encompass
all of these possibilities. For example, withMaybe we can define a
type that models one aspect of how Haskell style patterns behave,
namely that a value may be left unspecified. We will not implement
variable binding by a pattern here, but it is possible by using an
Either String instead of aMaybe.

type Match a = FixAnnotate Maybe a
type Match’ a = FixAnnotate’ Maybe a

With this definition of Match, writing a function to check
whether two such values “pattern match” against each other3 is
almost trivial. One simply needs to check if the constructors are
the same and if the children match, but aNothing matches against
anything.

match :: (Data a) => Match a -> Match a -> Bool
match (FixA Nothing) _ = True
match _ (FixA Nothing) = True
match (FixA (Just x)) (FixA (Just y)) =

same_constr x y &&
match_children x y

The constructors can be extracted so they may be compared
by using thetoConstr function available in theData.Generics
module [6, 7, 8]. This requires the constructor to actually be applied
to its arguments in order to have an object on whichtoConstr
can operate, but those arguments might not all be available since
any child could be aNothing instead of aJust. Fortunately,
the the particular value of those arguments will never be touched
toConstr so we can safely use an error value in lieu the actual
argument.

same_constr :: (Data a)
=> Match’ a -> Match’ a -> Bool

same_constr x y =
toConstr (fold x) == toConstr (fold y) where

fold :: Match’ a -> a
fold (AnnotateUnit f) = f
fold (AnnotateCons f _) =

(fold f) (error "Never used")

Because the children are quantified by an existential type,
matching them against each other might at first seem to pose a
problem, but that is easily remedied by usingcast. Unlike the
previous uses ofcast in move_down, this wont cause extraneous
failures; if the children being compared are of different types, then
the constructors had to have been different and the pattern match
we are implementing should returnFalse anyway.

match_children :: (Typeable a)
=> Match’ a -> Match’ a -> Bool

match_children (AnnotateUnit _)
(AnnotateUnit _) = True

match_children (AnnotateCons f_x b_x)

3 Haskell patterns actually match a value against a pattern instead of two
patterns against each other, but comparing twoMatch values against each
other is easier to implement. A value can always be wrapped inside aMatch,
so this is also more general.

8 2007/6/16



(AnnotateCons f_y b_y) =
case (cast f_y, cast b_y) of

(Just f_y’, Just b_y’) ->
match_children f_x f_y’ &&
match b_x b_y’

_ -> False
match_children _ _ = False

These tricks could of course be avoided for data types that have
already been written in a fixed-point style, but for data types that are
already written or for which writing a fixed-point would be difficult
(e.g. non-homogeneous data types), the ability to add annotations
to the data type in this way could be an easier option.

Also just asMatch andAnnotate both expand on the ideas at
the root ofLeft, the core idea inRight may have other applica-
tions, but it will not be explored here.

6. Conclusion
The generic zipper goes beyond the capabilities of the traditional
zipper in two ways. First, it doesn’t require the user to write any
boilerplate code to implement it. All it requires is an instance of
Data. It doesn’t automate any sort of all-at-once traversal because
the zipper is instead designed for incremental traversals, but it will
automate the incremental zipper movement operations.

Second and more importantly, the generic zipper is not limited
to homogeneous data types. The traditional zipper can only deal
with types such asTerm where every node is of the same type.
The generic zipper on the other hand, can handle not onlyTerm
but also types likeDept that have nodes with many different types.
The generic zipper does this while ensuring type safety, and with
the exception ofmove_down, it does this while avoiding the need
to flag any sorts of errors.

Finally, the implementation techniques used by the generic zip-
per can be applied to other problems. One possible application, pat-
tern matching, is sketched here but any problem where it would be
useful to wrap the subparts of a data value in some other type could
benefit from these techniques.

References
[1] Ralf Hinze and Johan Jeuring. Functional Pearl: Weaving a web.

Journal of Functional Programming, 11(6):681–689, November
2001.

[2] Ralf Hinze and Andres L̈oh. “Scrap your boilerplate” revolutions. In
MPC, pages 180–208, 2006.

[3] Ralf Hinze, Andres L̈oh, and Bruno C. D. S. Oliveira. “Scrap your
boilerplate” reloaded. InFLOPS, pages 13–29, 2006.

[4] Gérard Huet. The zipper.Journal of Functional Programming,
7(5):549–554, 1997.

[5] Oleg Kiselyov. Tool demonstration: A zipper based file/operating
system. InHaskell Workshop. ACM Press, September 2005.

[6] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate:
a practical design pattern for generic programming.ACM SIG-
PLAN Notices, 38(3):26–37, March 2003. Proceedings of the
ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

[7] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. InProceedings of the ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2004), pages 244–255. ACM Press, 2004.

[8] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with
class: extensible generic functions. InProceedings of the ACM
SIGPLAN International Conference on Functional Programming
(ICFP 2005), pages 204–215. ACM Press, September 2005.

[9] Conor McBride. The derivative of a regular type is its type of one-
hole contexts.http://www.cs.nott.ac.uk/~ctm/diff.pdf,
2001. Unpublished manuscript, 2001.

[10] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich,
and Geoffrey Washburn. Simple unification-based type inference
for GADTs. In Proceedings of the Eleventh ACM SIGPLAN
International Conference on Functional Programming, Portland,
Oregon, September 2006. ACM SIGPLAN.

[11] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.
Wobbly types: type inference for generalised algebraic data types.
Technical Report MS-CIS-05-26, University of Pennsylvania,
Computer and Information Science Department, Levine Hall, 3330
Walnut Street, Philadelphia, Pennsylvania, 19104-6389, July 2004.

[12] Don Stewart. Roll your own window manager: Tracking focus with a
zipper. http://cgi.cse.unsw.edu.au/~dons/blog/2007/05/
17, May 2007.

9 2007/6/16


