
Scrap Your Zippers

A Generic Zipper for Heterogeneous Types

Michael D. Adams

School of Informatics and Computing, Indiana University

http://www.cs.indiana.edu/~adamsmd/

Abstract

The zipper type provides the ability to efficiently edit tree-shaped
data in a purely functional setting by providing constant time edits
at a focal point in an immutable structure. It is used in a number of
applications and is widely applicable for manipulating tree-shaped
data structures.
The traditional zipper suffers from two major limitations, how-

ever. First, it operates only on homogeneous types. That is to say,
every node the zipper visits must have the same type. In practice,
many tree-shaped types do not satisfy this condition, and thus can-
not be handled by the traditional zipper. Second, the traditional zip-
per involves a significant amount of boilerplate code. A custom im-
plementation must be written for each type the zipper traverses.
This is error prone and must be updated whenever the type being
traversed changes.
The generic zipper presented in this paper overcomes these

limitations. It operates over any type and requires no boilerplate
code to be written by the user. The only restriction is that the types
traversed must be instances of the Data class from the Scrap your
Boilerplate framework.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; E.1 [Data]: Data
Structures—Trees

General Terms Design, Languages.

Keywords Generic programming, Zippers, Scrap your Boiler-
plate, Heterogeneous Types

1. Introduction

The zipper type provides the ability to efficiently edit tree-shaped
data in a purely functional setting [14]. It has been used to im-
plement text editors [6], file systems [15], and even window man-
agers [31]. In general, the zipper is applicable whenever there is a
well-defined focal point for edits. In a text editor, this focal point
is manifest as the user’s cursor. In a file system, it is manifest as
the current working directory. In a window manager, it is the win-
dow with focus. Creating a zipper is a straightforward, formulaic
process that derives from the shape of the type that the zipper tra-
verses [9, 24].

© ACM, 2010. This is the author’s version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive ver-
sion was published in WGP ’09: Proceedings of the 2010 ACM SIGPLAN workshop
on Generic programming, (September 2010). http://doi.acm.org/10.1145/
1863495.1863499

WGP ’10, September 26, 2010, Baltimore, Maryland, USA.
Copyright © 2010 ACM 978-1-4503-0251-7/10/09. . . $10.00

The traditional zipper suffers from two major limitations, how-
ever. First, it is limited to operating over homogeneous types. Each
node in the tree that the zipper traverses must be of the same type.
Thus the traditional zipper works wonderfully for making edits to
an abstract syntax tree for the lambda-calculus where everything
is an expression, but it is unable to manipulate an abstract syntax
tree for a language that, in addition to expressions, contains type
annotations or statements.
The second limitation is the problem with any regularly struc-

tured, formulaic piece of code: It shouldn’t be written in the first
place! At least not by a human. Formulaic code is monotonous to
write and maintain, and the zipper must be updated every time the
underlying type changes. Tools exist to automatically generate zip-
per definitions from a type (e.g., using Template Haskell [30]), but
this introduces a meta-layer to our programs that it would be better
to avoid unless really necessary.
The generic zipper presented in this paper overcomes these lim-

itations. It operates over any type irrespective of whether it is ho-
mogeneous or not. It requires no boilerplate code, and integrates
within the existing Haskell language without a meta-level system.
The only restriction is the types the zipper traverses must be in-
stances of the Data class from the Scrap your Boilerplate frame-
work [20–22].
This paper borrows terminology and operators from the Scrap

your Boilerplate framework. They are explained when first used.
Nonetheless, the reader might find it helpful to have some familiar-
ity with that framework.
Also, the internals of the generic zipper use existential types and

GADTs [26], but these do not show up in the user-level interface.
Thus a basic understanding of them is necessary to understand the
implementation but not to use the generic zipper.
The code for the generic zipper is available as a Haskell library

from the HackageDB repository at http://hackage.haskell.
org/package/syz.
The remainder of this paper is organized as follows. Section 2

reviews the traditional zipper and its implementation. Section 3 in-
troduces the generic zipper and how to use it. Section 4 applies the
generic zipper to generic traversals. Section 5 shows the implemen-
tation of the generic zipper. Section 6 reviews related work. Section
7 concludes.

2. Traditional Zippers

A zipper is made up of two parts: a one-hole context and a hole
value to fill the hole in the context. The hole value is the portion
of the object rooted at the current position of the zipper within
the overall object. This position is called the focus. The context
contains the overall object but with the hole value missing. To see
how this works for the traditional zipper we follow the development
in Hinze and Jeuring [9] before moving on to the generic zipper.

downTerm :: TermZipper → Maybe TermZipper
downTerm (Var s, c) = Nothing
downTerm (Lambda s t1 , c) = Just (t1 , Lambda1 s c)
downTerm (App t1 t2 , c) = Just (t1 , App1 c t2)
downTerm (If t1 t2 t3 , c) = Just (t1 , If1 c t2 t3)

upTerm :: TermZipper → Maybe TermZipper
upTerm (t1 , RootTerm) = Nothing
upTerm (t1 , Lambda1 s c) = Just (Lambda s t1 , c)
upTerm (t1 , App1 c t2) = Just (App t1 t2 , c)
upTerm (t2 , App2 t1 c) = Just (App t1 t2 , c)
upTerm (t1 , If1 c t2 t3) = Just (If t1 t2 t3 , c)
upTerm (t2 , If2 t1 c t3) = Just (If t1 t2 t3 , c)
upTerm (t3 , If3 t1 t2 c) = Just (If t1 t2 t3 , c)

leftTerm :: TermZipper → Maybe TermZipper
leftTerm (t1 , RootTerm) = Nothing
leftTerm (t1 , Lambda1 s c) = Nothing
leftTerm (t1 , App1 c t2) = Nothing
leftTerm (t2 , App2 t1 c) = Just (t1 , App1 c t2)
leftTerm (t1 , If1 c t2 t3) = Nothing
leftTerm (t2 , If2 t1 c t3) = Just (t1 , If1 c t2 t3)
leftTerm (t3 , If3 t1 t2 c) = Just (t2 , If2 t1 c t3)

rightTerm :: TermZipper → Maybe TermZipper
rightTerm (t1 , RootTerm) = Nothing
rightTerm (t1 , Lambda1 s c) = Nothing
rightTerm (t1 , App1 c t2) = Just (t2 , App2 t1 c)
rightTerm (t2 , App2 t1 c) = Nothing
rightTerm (t1 , If1 c t2 t3) = Just (t2 , If2 t1 c t3)
rightTerm (t2 , If2 t1 c t3) = Just (t3 , If3 t1 t2 c)
rightTerm (t3 , If3 t1 t2 c) = Nothing

Figure 1. Zipper Movement Operations for Term.

2.1 Implementing the Zipper

Consider this abstract syntax tree for a hypothetical language:

data Term
= Var String
| Lambda String Term
| App Term Term
| If Term Term Term

A zipper for this type is a pairing of a Term that is the hole
value with a TermContext that is the one-hole context. For each
recursive child of each constructor in Term, the TermContext
type has a constructor with that child missing and replaced by a
reference to a parent context.

type TermZipper = (Term, TermContext)
data TermContext
= RootTerm
| Lambda1 String TermContext
| App1 TermContext Term
| App2 Term TermContext
| If1 TermContext Term Term
| If2 Term TermContext Term
| If3 Term Term TermContext

fromZipperTerm :: TermZipper → Term
fromZipperTerm z = f z where

f :: TermZipper → Term
f (t1 , RootTerm) = t1
f (t1 , Lambda1 s c) = f (Lambda s t1 , c)
f (t1 , App1 c t2) = f (App t1 t2 , c)
f (t2 , App2 t1 c) = f (App t1 t2 , c)
f (t1 , If1 c t2 t3) = f (If t1 t2 t3 , c)
f (t2 , If2 t1 c t3) = f (If t1 t2 t3 , c)
f (t3 , If3 t1 t2 c) = f (If t1 t2 t3 , c)

toZipperTerm :: Term → TermZipper
toZipperTerm t = (t, RootTerm)

getHoleTerm :: TermZipper → Term
getHoleTerm (t, _) = t

setHoleTerm :: Term → TermZipper → TermZipper
setHoleTerm h (_, c) = (h, c)

Figure 2. Zipper Non-Movement Operations for Term.

In the Term type:

− The If constructor has three children, so there are three corre-
sponding constructors in TermContext.

− Likewise, App has two children and two corresponding con-
structors in TermContext.

− Since the traditional zipper operates over homogeneous types,
the String argument to Lambda isn’t considered a child, thus
Lambda has only one constructor in TermContext, namely the
constructor for when the Term child of Lambda is missing.

− Finally, Var has no Term children, so it has no corresponding
constructors in TermContext.

Each TermContext contains a reference to a parent context, which
in turn points to its own parent context. These parent contexts
form a chain back to the root of the overall object. The chain is
terminated by the RootTerm constructor. Effectively, these contexts
are the result of a pointer reversal. Instead of the parent pointing to
the child, the child now points to the parent.
Navigating a TermZipper is implemented by downTerm , upTerm ,

leftTerm and rightTerm as shown in Figure 1. Moving down hap-
pens by deconstructing the hole value, extracting a child object, and
extending the context with the other children. The extracted child
object then becomes the new hole value.
Moving up is the reverse process. The siblings objects stored in

the current context are combined with the hole value to form a new
hole value, and the parent context becomes the current context.
Moving left and right are very similar to each other. They each

take the current hole and replace it with the sibling immediately to
either the left or the right.
The movement operations may fail by returning Nothing if a

movement is illegal (e.g., moving left when already at the left-
most position). Another common way the zipper interface can be
defined is to ignore illegal movements and return the unchanged
zipper instead of returning a Maybe type. Nevertheless, explicitly
signaling illegal movements provides more information to the user
and is used when defining generic zipper traversals in Section 4.
Finally, as shown in Figure 2, the zipper has functions for

converting a value to and from a zipper, getting the hole value,

and setting the hole value. With the exception of fromZipperTerm ,
these are trivial wrapper functions manipulating the pair that forms
a zipper. The fromZipperTerm function moves all the way to the
root context before returning the resulting value.

2.2 Using the Zipper

To see how a zipper is used in practice, consider this abstract syntax
tree that defines a factorial function:

fac = Lambda "n"
(If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")
(App (App (Var "+") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

This definition contains a bug. The + operator should really be
the * operator. A zipper can fix this.
First toZipperTerm creates a new zipper. That zipper starts with

a focus at the root of the object so the hole will contain the original
definition of fac.

*Main> let t0 = toZipperTerm fac
*Main> getHoleTerm t0

Lambda "n"
(If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")
(App (App (Var "+") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

The first step to getting to the offending * is to use downTerm . Now
the hole contains the body of the Lambda.

*Main> let Just t1 = downTerm t1
*Main> getHoleTerm t1

If (App (App (Var "=") (Var "n")) (Var "0"))
(Var "1")
(App (App (Var "+") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n"))))

Moving down again focuses the zipper on the test part of the If, but
we want to go to the third child of the If, so we also move using
rightTerm twice.

*Main> let Just t2 = downTerm t1
*Main> getHoleTerm t2

App (App (Var "=") (Var "n")) (Var "0")

*Main> let Just t3 = rightTerm t2
*Main> getHoleTerm t3

Var "1"

*Main> let Just t4 = rightTerm t3
*Main> getHoleTerm t4

App (App (Var "+") (Var "n"))
(App (Var "fac")

(App (Var "pred") (Var "n")))

The zipper moves down again into the function position of the App.

*Main> let Just t5 = downTerm t4
*Main> getHoleTerm t5

App (Var "+") (Var "n")

The zipper moves down one last time to get to the Var "+" that we
want to change to Var "*".

*Main> let Just t6 = downTerm t5
*Main> getHoleTerm t6

Var "+"

Finally, setHoleTerm changes the value.

Main> let t7 = setHoleTerm (Var "") t6

By moving up one level, we can see that our change is reflected in
the larger term.

*Main> let Just t8 = upTerm t7
*Main> getHoleTerm t8

App (Var "*") (Var "n")

After moving up a few more times we can retrieve the corrected
definition of fac.

*Main> let Just t9 = upTerm t8
*Main> let Just t10 = upTerm t9
*Main> let Just t11 = upTerm t10
*Main> getHoleTerm t11

Lambda "n"
(If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")
(App (App (Var "*") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

Or we can use fromZipperTerm to go directly to the root and get
the corrected definition.

*Main> fromZipperTerm t7

Lambda "n"
(If (App (App (Var "=") (Var "n")) (Var "0"))

(Var "1")
(App (App (Var "*") (Var "n"))

(App (Var "fac")
(App (Var "pred") (Var "n")))))

3. Using the Generic Zipper

While the traditional zipper works fine for homogeneous types like
Term, it runs into problems with more complex types. Consider this
type representing a department:

data Dept = D Manager [Employee]
deriving (Show, Typeable, Data)

data Employee = E Name Salary
deriving (Show, Typeable, Data)

type Salary = Float
type Manager = Employee
type Name = String

Instead of just a single type in the case of Term, a zipper for
this has to traverse five different types: Dept, Employee, Salary,
Manager, and Name. Situations like this happen often. A compiler
may have an abstract syntax tree that represents statements and type
annotations in addition to expressions, or a graphical user interface
toolkit may represent different classes of widgets with different
types. The traditional zipper cannot handle this. Furthermore, for
each new type, the traditional zipper requires a complete rewrite of
the boilerplate code in Figures 1 and 2.

Injection and Projection

toZipper :: (Data a) => a → Zipper a
fromZipper :: Zipper a → a

Movement

up :: Zipper a → Maybe (Zipper a)
down :: Zipper a → Maybe (Zipper a)
left :: Zipper a → Maybe (Zipper a)
right :: Zipper a → Maybe (Zipper a)

Hole manipulation

query :: GenericQ b → Zipper a → b
trans :: GenericT → Zipper a → Zipper a
transM :: (Monad m) =>
GenericM m → Zipper a → m (Zipper a)

Figure 3. Generic Zipper Interface.

The generic zipper surmounts these issues. It operates on non-
homogeneous types like Dept and Employee just as well as on
homogeneous types like Term. It also makes no difference if the
type is directly or indirectly recursive. Finally, the generic zipper
requires no boilerplate code on the user’s part. The only restriction
is that the type that the zipper traverses must be an instance of the
Data class. The Data class is provided by the standard libraries
packaged with GHC and GHC can automatically derive instances
of Data for user defined types [7]. The interface to the generic
zipper is shown in Figure 3.
As an example of using the generic zipper, consider the follow-

ing department:

dept :: Dept
dept = D agamemnon [menelaus, achilles, odysseus]

agamemnon, menelaus,
achilles, odysseus :: Employee

agamemnon = E "Agamemnon" 5000
menelaus = E "Menelaus" 3000
achilles = E "Achilles" 2000
odysseus = E "Odysseus" 2000

Suppose Agamemnon decides that his employee record should
really refer to him as KingAgamemnon. To start, toZipper creates
a new generic zipper.

*Main> let g1 = toZipper dept
*Main> :type g1

g1 :: Zipper Dept

We would like to inspect the hole value, but first we must un-
derstand how the generic zipper deals with the type of the hole.
With a traditional zipper, the type of the hole is fixed. For example,
getHoleTerm always returns a Term. But with a generic zipper, the
type of the hole changes as the focus of the zipper moves around.
While the type of the zipper contains the type of the root object,
Dept, it hides the type of the current hole. Since the zipper is still
at the root, the hole has the value and type of the original object,
but the compiler doesn’t know that. It knows only the type of the
zipper, which doesn’t expose the type of the hole. This is resolved
by the hole-manipulation functions, query, trans, and transM.
Each is defined in terms of a user-supplied generic function that

operates on any argument type (e.g., the universally quantified a
in Figure 4) provided the type is an instance of the Data class.
To retrieve the contents of the hole, we supply to query a generic
query function of type ∀ a. (Data a) => a → r. For this example,
we borrow the type-safe cast function from the Scrap your Boil-
erplate framework. It has the following type, where the Typeable
class is a superclass of the Data class. It returns Nothing to indi-
cate cast failure.

cast :: (Typeable a, Typeable b) => a → Maybe b

As expected the hole contains the original object:

*Main> query cast g1 :: Maybe Dept

Just (D (E "Agamemnon" 5000.0)
[E "Menelaus" 3000.0,
E "Achilles" 2000.0,
E "Odysseus" 2000.0])

Since in this example we will be retrieving the contents of the hole
several times, we define a helper for it:

getHole :: (Typeable b) => Zipper a → Maybe b
getHole = query cast

None of the core generic-zipper functions involve any casts. It is
up to the user when a cast is used. Readers familiar with the Scrap
your Boilerplate framework should note the generic zipper shares a
similar design philosophy in this regard. For example, in Scrap your
Boilerplate the generic mapping functions, gmapT, gmapQ, and
gmapM, take a user-supplied generic function. As a consequence,
the generic zipper also shares similar advantages (i.e., casts occur
only where the user specifies) and disadvantages (i.e., sometimes
the user must specify a cast).
To change the king’s title, the zipper must navigate to the proper

position. The first step is to move down. Just like the traditional
zipper, if the current node has no children, down returns Nothing.
Otherwise it returns Just.

*Main> let Just g2 = down g1
*Main> getHole g2 :: Maybe [Employee]

Just [E "Menelaus" 3000.0,
E "Achilles" 2000.0,
E "Odysseus" 2000.0]

The zipper descends to the right-most child instead of the left-
most child. The generic zipper’s down function always does this
for reasons that are explained later in the implementation section.
For now this means that Agamemnon’s record is the left sibling
of where the zipper is currently focused, so the next thing to do is
move left.

*Main> let Just g3 = left g2
*Main> getHole g3 :: Maybe Employee

Just (E "Agamemnon" 5000.0)

Now the current hole is Agamemnon’s Employee record, and there
is one [Employee] sibling to the right. Moving down once more
and to the left will get us to the Name in his record.

*Main> let Just g4 = down g3
*Main> getHole g4 :: Maybe Salary

Just 5000.0

*Main> let Just g5 = left g4
*Main> getHole g5 :: Maybe Name

Just "Agamemnon"

type GenericQ r = ∀ a. (Data a) => a → r
type GenericT = ∀ a. (Data a) => a → a
type GenericM m = ∀ a. (Data a) => a → m a

Figure 4. Type Aliases for Generic Functions.

Once the zipper is focused at the right place, we are ready to give
the king his proper title. This involves manipulating the contents of
the hole, so we use the same trick as when retrieving the contents of
the hole. Specifically, we use the trans function, which applies a
generic transformer to the hole. To construct a generic transformer
for this example, we again borrow a function from Scrap your Boil-
erplate. This time it is the mkT function:

mkT :: (Typeable a, Typeable b) => (b → b) → a → a

It takes as an argument a function that transforms one type of ob-
ject and lifts that function to be a generic transformer for any type
of object. Like before with getHole, mkT implements the helper
function setHole:

setHole :: (Typeable a) => a → Zipper b → Zipper b
setHole h z = trans (mkT (const h)) z

This function leaves the hole unchanged if it is not of type a.
While we are giving the king his proper title, let’s also move to

the right and give the king a raise.

*Main> let g6 = setHole "King Agamemnon" g5
*Main> let Just g7 = right g6
*Main> let g8 = setHole (8000.0 :: Float) g7

If we traverse up the zipper, we can verify that the changes we made
had the proper effect:

*Main> let Just g9 = up g8
*Main> getHole g9 :: Maybe Employee

Just (E "King Agamemnon" 8000.0)

Finally, by moving up once more we can retrieve the now mod-
ified root object, or we can also get it using fromZipper, which
automatically moves all the way to the root of the zipper and returns
the resulting object.

*Main> fromZipper g9
D (E "King Agamemnon" 8000.0)
[E "Menelaus" 3000.0,
E "Achilles" 2000.0,
E "Odysseus" 2000.0]

As mentioned before, every one of these operations is completely
type-safe, and there are no type casts or dynamic type checks except
those that are part of the user-supplied generic functions. At worst,
the movement operations may fail by returning Nothing when
the user tries an illegal movement. This is also the case with a
traditional zipper, and like the traditional zipper, it is also possible
to define versions of the generic zipper movement functions that
ignore illegal movements instead of returning a Maybe type.

4. Generic Traversals with Zippers

In the preceding section, the zipper traversed over a specific type,
namely Dept. In that case, the generic zipper offers two advantages:
it operates over heterogeneous types, and it does not entail writing
any boilerplate code. Still, we can go a step further. The generic
zipper can express generic traversals just as easily as non-generic

traversals. Many generic programming systems provide generic
traversals already, but the generic zipper is particularly suited to
expressing traversals. After all, traditional zippers were invented
for term traversal. The generic zipper merely makes it possible for
the traversal to be generic.

4.1 Traversal Helpers

Before writing any generic zipper traversals, we define higher-level
movement zipper operations in Figure 5. They abstract out common
usage patterns and automatically handle the Maybe returned by the
zipper movement functions. They are defined in terms of the core
zipper movement primitives, so they do not change the expressive
power of the generic zipper.

Query Movement These functions apply their f argument to the
result of a movement, but only if the movement is legal. Otherwise,
they return their b argument. For example, the following returns
False as there is no sibling to the left of g6 .

leftQ False (const True) g6

On the other hand, the following returns Just 8000.0 as the right
sibling of g6 is the king’s salary.

rightQ Nothing getHole g6 :: Maybe Salary

Transformer Movement These functions extend query move-
ment by replacing the hole value with the result of f and then
moving the zipper back to its original position. If the movement
is illegal, they leave the hole unchanged. Thus when changing
Agamemnon’s ... ahem ... King Agamemnon’s salary, we could
leave the g6 zipper focused on his title and skip the intermediate
g7 step:

*Main> let g8 =
rightT (setHole (8000.0 :: Float)) g6

*Main> getHole g8 :: Maybe Name

Just "King Agamemnon"

*Main> let Just g9 = up g8
*Main> getHole g9 :: Maybe Employee

Just (E "King Agamemnon" 8000.0)

The upT function has an additional complication as naively mov-
ing down after moving up leaves the zipper at the rightmost sibling
instead of the original position. Thus to preserve the original po-
sition, it wraps extra left and right movements around the core up
and back down movement.

Sibling Movement Finally, the leftmost and rightmost func-
tions move a zipper to the leftmost or rightmost sibling by repeat-
edly applying leftQ and rightQ. These are used to dictate which
child to start at after a downward movement.

4.2 Generic Bottom-Up Traversal

As an example of a generic zipper traversal, consider the classic
bottom-up traversal that applies a given transformer in post-order
to every node in the tree structure of an object. Algorithmically,
the traversal consists of moving down whenever a node has chil-
dren and recursively applying the traversal to each child. After the
traversal is applied to the children, the transformer is applied to the
current node.
In Figure 6, zeverywhere expresses this algorithm in terms of

a generic zipper. The downT function applies g to the rightmost
child whenever the current node has children. When there are
no children, it returns the zipper unchanged. The g function then
applies zeverywhere to the child and uses leftT to iteratively
apply g to the remaining left siblings. This stops when leftT

Query Movement

leftQ, rightQ, downQ, upQ ::
b → (Zipper a → b) → Zipper a → b

leftQ b f z = moveQ left b f z
rightQ b f z = moveQ right b f z
downQ b f z = moveQ down b f z
upQ b f z = moveQ up b f z

moveQ move b f z = case move z of

Nothing → b
Just z → f z

Transformer Movement

leftT, rightT, downT, upT ::
(Zipper a → Zipper a) → Zipper a → Zipper a

leftT f z = moveT left right z f z
rightT f z = moveT right left z f z
downT f z = moveT down up z f z
upT f z = g z where

g z = moveT right left (h z) g z
h z = moveT up down z f z

moveT move1 move2 b f z =
moveQ move1 b (moveQ move2 b id . f) z

Sibling Movement

leftmost, rightmost :: Zipper a → Zipper a
leftmost z = leftQ z leftmost z
rightmost z = rightQ z rightmost z

Figure 5. Traversal Helper Functions.

detects that there are no more left siblings. At that point the call
stack unwinds and leftT and downT move the zipper right and up
to its original position. Finally, the trans function applies f to the
value in the hole.

4.3 Generic Outermost-Leftmost Reduction

The bottom-up traversal that zeverywhere implements is rather
simple. Most generic programming systems easily express it. The
generic zipper, however, can also express much more sophisticated
traversals. Consider the problem of repeatedly applying the outer-
most, leftmost reduction. The first reduction is easily found by a
standard top-down, left-to-right traversal. The reductions after that
require more care because applying a reduction may make new re-
ductions possible in the ancestors of the current node. The traversal
must always apply the outermost reduction first. A naive solution
is to restart the traversal at the root after each reduction, but this is
inefficient. Only direct ancestors of the current node can contain a
new reduction. Already traversed siblings need not be searched. A
better solution searches only these ancestors.
This more efficient algorithm is presented in two steps using

the generic zipper. The first step exposes explicit control of the
zipper movements. The second step adds searching for reducible
ancestors.

4.3.1 Exposing Explicit Control

The zeverywhere’ function in Figure 6 implements the first step.
It differs from zeverywhere in that it is top-down and left-to-right,
but more importantly, it explicitly controls movement up the zipper

zeverywhere :: GenericT → Zipper a → Zipper a
zeverywhere f z = trans f (downT g z) where

g z = leftT g (zeverywhere f z)

zeverywhere’ :: GenericT → Zipper a → Zipper a
zeverywhere’ f z =
downQ (g x) (zeverywhere’ f . leftmost) x where

x = trans f z
g z = rightQ (upQ z g z) (zeverywhere’ f) z

Figure 6. Bottom-up and Top-down Zipper Traversals.

instead of letting downT automatically move the up zipper. This
explicit control is used in the second step when checking ancestors
for new reductions.
To make the traversal top-down, the trans function is applied

before recurring instead of after. To make it left-to-right, not only
are left movements replaced with right movements, but when mov-
ing down, leftmost starts the traversal at the leftmost child.
The original zeverywhere function used downT and leftT to

return the zipper automatically to its starting position. This is a
problem when a new reduction is found in one the ancestors and
the zipper starts traversing at a brand new position. Thus instead of
downT and rightT, zeverywhere’ uses downQ and rightQ. The
former two automatically move the zipper back up or left after they
are done, but the latter two do not.
Using these, zeverywhere’ expresses its traversal in terms of

the well-known algorithm for traversing a tree in constant stack
space [18]. First, it keeps recurring down the leftmost child us-
ing downQ and leftmost. Once it reaches a leaf where there are
no children, downQ evaluates to g x. The g function searches for a
place to move right by starting with the current node and checking
each ancestor. If there is no right sibling, then rightQ calls upQ,
which moves the zipper up and calls back to g to continue search-
ing. Once g finds a place to move right, it starts moving down again
by calling zeverywhere’. Finally, if it reaches the root in the pro-
cess of finding a place to move right, then the traversal stops and
returns the first argument of upQ, namely z.
Stated simply, the traversal moves down until it cannot do so

anymore at which point it tries to move right. If it cannot move
right at the current node, then it moves up until it finds a place to
move right. Once it finds a place to move right, it continues the
downward traversal.

4.3.2 Checking Ancestors

The second step uses the explicit movement control to check for
new reductions in the ancestors. This is implemented by zreduce
in Figure 7. In zeverywhere’, f has type:

∀ a. (Data a) => a → a

But in zreduce, f has type:

∀ a. (Data a) => a → Maybe a

This is so f can signal whether it succeeded at applying a reduction
to the current node. Because of this change, zreduce uses transM
instead of trans. The transM function lifts the Maybe value so
that when f returns Nothing, transM also returns Nothing, and
when f returns Just, transM also returns Just.
When f cannot apply a reduction, it returns Nothing. In that

case, zreduce continues exactly the same as zeverywhere’.
When f succeeds at applying a reduction, it returns Just and
reduceAncestors runs to see if any ancestors are reducible
and repositions the zipper accordingly. Once reduceAncestors

finishes, zreduce continues the traversal at the position that
reduceAncestors left the zipper.
The reduceAncestors function takes an extra argument, def,

in addition to the transformer, f, and the current zipper, z. The
def argument is the default value that reduceAncestors should
return if it finds no reducible ancestors of z. It is returned by
upQ when z has no parent. Otherwise, g is called with the parent
zipper and continues the search with a default value of def’. When
computing def’, if the parent is not reducible, then transM f z
returns Nothing and the original default is returned. But if the
parent is reducible, then the reduced zipper, x, is returned after
it is checked to see if the reduction caused other ancestors to be
reducible. Due to Haskell’s laziness, the ancestor check on x is not
computed unless there are no further reducible ancestors of z that
take precedence over x.
Implementing zreduce with the generic zipper requires only

straightforward, direct-style zipper manipulation. The generic zip-
per inherits the advantages that the traditional zipper has in express-
ing traversals and extends them to generic traversals.

5. Implementing the Generic Zipper

Just as with the traditional zipper, the generic zipper is made up of
a hole and a context. However, while the type of the hole is fixed in
a traditional zipper, in a generic zipper it may change as the focus
moves. Thus we must construct a type that expresses this variability
in a type-safe way. This is done by the Zipper type. It contains an
existentially quantified1 hole and a context that matches both the
hole and the zipper’s root type.

data Zipper root =
∀ hole. (Data hole) =>

Zipper hole (Context hole root)

As with a traditional zipper, the Context type keeps track of the
siblings and parents of the current hole and ensures that they are
of appropriate types. From a high-level perspective, a Context
represents a one-hole context that contains a hole of type hole
and a top-most node of type root. Except when it is the top-most
context represented by NullCtxt , it contains a set of left siblings, a
set of right siblings, and its parent context:

data Context hole root where

NullCtxt :: Context a a
ConsCtxt :: Left ... → Right ... → Context ...

→ Context hole root

The parts marked by ellipses are omitted for now. They ensure that
the parent’s hole is compatible with the current hole and siblings.
We will fill them in after we see how the siblings are represented
by Left and Right.

5.1 Left Siblings

The Left type2 holds the left siblings of the current hole:

data Left expects
= UnitLeft expects
| ∀ b. (Data b) => ConsLeft (Left (b → expects)) b

The key to understanding this type is b, the existentially quantified
type variable in ConsLeft . The first argument of ConsLeft is a Left
that represents a partially applied constructor of type b → expects.

1GHC uses the ∀ keyword for both existential and universal types. The
distinction between the two is where the keyword is positioned.
2Readers familiar with the Scrap your Boilerplate: Reloaded frame-
work [10, 12] may recognize this type as Spine.

zreduce :: GenericM Maybe → Zipper a → Zipper a
zreduce f z =
case transM f z of

Nothing →
downQ (g z) (zreduce f . leftmost) z where

g z = rightQ (upQ z g z) (zreduce f) z
Just x → zreduce f (reduceAncestors f x x)

reduceAncestors ::
GenericM Maybe → Zipper a → Zipper a → Zipper a

reduceAncestors f z def = upQ def g z where

g z = reduceAncestors f z def’ where

def’ = case transM f z of

Nothing → def
Just x → reduceAncestors f x x

Figure 7. Optimized Zipper Reduction Traversal.

This is packaged up with a second argument of type b. This packag-
ing represents the application of the former to the latter to construct
an object of type expects. Because ConsLeft does not actually per-
form the application—it merely represents it—the b object can be
extracted at a later time. Multiple virtual applications are chained
together to supply each of the arguments for a multi-argument con-
structor. The base case for this is a raw constructor that is not ap-
plied to anything and is represented with UnitLeft .
Understanding this type should be clearer with an example.

Suppose for the moment that we want to use Left to represent
constructor applications for the type Foo:

data Foo = Bar Int Char | Baz Float

To build a Foo object we start with the Bar constructor. This is
represented by the value UnitLeft Bar. The type of this value is:

UnitLeft Bar :: Left (Int → Char → Foo)

The arguments that Bar is expecting are manifest in the type of the
resulting Left object. We can add those arguments with ConsLeft ,
and the way ConsLeft is defined ensures that those arguments are
of the proper type.

*Main> :type UnitLeft Bar
‘ConsLeft ‘ 1

it :: Left (Char → Foo)

*Main> :type UnitLeft Bar
‘ConsLeft ‘ 1
‘ConsLeft ‘ ’a’

it :: Left Foo

*Main> :type UnitLeft Baz

it :: Left (Float → Foo)

*Main> :type UnitLeft Baz
‘ConsLeft ‘ 1.0

it :: Left Foo

In short, Left contains a value of existentially quantified type b
provided b matches the argument type expected by the constructor.

5.2 Right Siblings

The representation of right siblings is very similar to that of left
siblings. The major difference is that instead of encoding what
children the partial constructor application expects, the type needs
to encode what children it provides.

data Right provides parent where

NullRight :: Right parent parent
ConsRight ::

(Data b) => b → Right a t → Right (b → a) t

The NullRight constructor represents when there are no siblings
to the right of the current hole. When there are siblings to the
right, they are represented with ConsRight . The parent parameter
to this type is used later when we combine Left and Right into a
Context, where it ensures that context types properly match.
Consider a Right that represents right siblings to be fed to the

Bar constructor. Every Right starts off with a NullRight :

*Main> :type NullRight

it :: Right parent parent

A Right stores its values starting with the rightmost, so the first
value stored must have the type of the last argument to Bar, namely
Char.

*Main> :type ConsRight ’a’ NullRight

it :: Right (Char → a) a

Next the preceding argument to Bar is added:

*Main> :type ConsRight 1 (ConsRight ’a’ NullRight)

it :: Right (Int → Char → a) a

Except for the universally quantified a, the provides type pa-
rameter of the resulting Right now matches the type of the Bar
constructor (i.e., Int → Char → Foo). This encodes the fact that
the Right object provides values that match what Bar expects as
arguments. The universal quantification of type a is a bit worri-
some, but that is rectified in the next section.

5.3 Combining Left and Right

Before returning to the complete zipper context, consider how a
matching Left and Right are combined. With a Left and Right
object of the appropriate types we should be able to reconstruct
the object that they represent by first performing the applications
represented in the Left and then applying the result to the argu-
ments stored in the Right. A Left and Right are of appropriate
types when the expects type parameter of the Left equals the
provides parameter of the Right.
The combine function in Figure 8 does this combination, but it

also leaves room for an extra argument, hole, that goes between the
Left and the Right. The fromLeft helper function does the appli-
cations that are represented by a Left, and the fromRight helper
function applies a function to the values stored in a Right. The
combine function first uses fromLeft to apply all the values stored
in the lefts. Then it applies the result to hole. Lastly that result is
applied to the values stored in the rights using fromRight. Con-
ceptually, combine is an evaluator for the language of applications
embodied in Left and Right.
Consider how the parent parameter to Right behaves. Given

the way Right is defined, the parent parameter always is a suffix
of the provides parameter. Furthermore, in a call to combine, the
provides parameter of the Right is rights, which is part of the
expects parameter of the Left. So parent must match what is at

combine :: Left (hole → rights)
→ hole
→ Right rights parent
→ parent

combine lefts hole rights =
fromRight ((fromLeft lefts) hole) rights

fromLeft :: Left r → r
fromLeft (UnitLeft a) = a
fromLeft (ConsLeft f b) = fromLeft f b

fromRight :: r → Right r parent → parent
fromRight f (NullRight) = f
fromRight f (ConsRight b r) = fromRight (f b) r

Figure 8. The combine implementation.

the end of the expects parameter, and this is precisely the result
type of the constructor. This eliminates the problem with parent
being universally quantified seen in the earlier example, and along
with the matching of the expects and provides type parameters,
serves a key role in the implementation of Context.

5.4 Context

With both Left and Right defined, we can now return to the
Context type. Given a matching Left and Right, the only part
missing is the parent context. That parent context must have a hole
that matches the type that is constructed from the Left and Right
siblings, i.e., the parent parameter of Right. The full definition
of Context is as follows, where both rights and parent are
existentially quantified:

data Context hole root where

NullCtxt :: Context a a
ConsCtxt ::
∀ rights parent. (Data parent) =>

Left (hole → rights)
→ Right rights parent
→ Context parent root
→ Context hole root

While this type may appear complicated, notice that each argument
to the ConsCtxt constructor shares at least one type parameter with
one of the other arguments. The Left shares rights with the
Right, and the Right shares parent with the parent Context.
This means that we can produce a new Context only if we have
matching Left and Right siblings that combine to fill the parent
hole in the parent Context. The root of the resulting Context is
the same as the root of the parent Context.

5.5 Zipper Operations

Once the types are defined, implementing movement for the generic
zipper is easy. The implementations of left, right and up are
shown in Figure 9. The left function simply pulls a ConsLeft
off of the left part of the context and adds a ConsRight onto the
right part of the context. The right function does the reverse.
Similarly, the up function pulls a ConsCtxt off of the context and,
using combine, constructs a new value for the hole of the parent
context.
Finally, in Figure 10 we define functions for constructing a

zipper from scratch with toZipper, extracting the root object of
a zipper with fromZipper, querying the value of the current hole

left (Zipper _ NullCtxt) = Nothing
left (Zipper _ (ConsCtxt (UnitLeft _) _ _)) = Nothing
left (Zipper h (ConsCtxt (ConsLeft l h’) r c)) =
Just (Zipper h’ (ConsCtxt l (ConsRight h r) c))

right (Zipper _ NullCtxt) = Nothing
right (Zipper _ (ConsCtxt _ NullRight _)) = Nothing
right (Zipper h (ConsCtxt l (ConsRight h’ r) c)) =
Just (Zipper h’ (ConsCtxt (ConsLeft l h) r c))

up (Zipper _ NullCtxt) = Nothing
up (Zipper hole (ConsCtxt l r ctxt)) =
Just (Zipper (combine l hole r) ctxt)

Figure 9. Generic Zipper Movement.

with query, and transforming the value of the current hole with
trans and transM. With the exception of fromZipper these are
trivial wrappers around the Zipper constructor. The fromZipper
function does the same as up except it continues moving up until it
reaches the root.

5.6 Implementing Down

With a single exception, all of the core zipper operations simply
shuffle the constructors of a zipper around. The one exception,
down, is slightly more sophisticated. The other operations manipu-
late contexts and siblings that already exist as Context, Left and
Right values. When moving down, however, those values do not
yet exist; they must be built by deconstructing the hole.
To construct those values we use the gfoldl function defined

in the Data class from the Scrap your Boilerplate framework:

gfoldl :: (Data a)
=> (∀ a1 b. (Data a1) => c (a1 → b) → a1 → c b)

-- Argument application
→ (∀ g. g → c g) -- Constructor injection
→ a -- The object to be folded
→ c a

The gfoldl function is defined so that the call gfoldl f k a
deconstructs the object a, applies k to the extracted constructor of
a, and then reapplies each of the constructor’s arguments using f.
For example the call:

*Main> gfoldl f k (Bar 5 ’d’)

deconstructs Bar 5 ’d’ into three parts: Bar, 5, and ’d’. The k
function wraps around Bar, and then f reapplies 5 and ’d’. The
end result is that our gfoldl call is equivalent to:

*Main> ((k Bar) ‘f‘ 5) ‘f‘ ’d’

The gfoldl function is significant because it provides a way to
access the pieces of a value without performing case analysis or
knowing anything about the type being manipulated. GHC auto-
matically generates a definition of it when deriving a Data class
instance for a type.
The generic zipper uses gfoldl to implement the toLeft

helper, which deconstructs a value into a set of left siblings:

toLeft :: (Data a) => a → Left a
toLeft a = gfoldl ConsLeft UnitLeft a

For example toLeft (Bar 5 ’d’) results in the value:

(UnitLeft Bar) ‘ConsLeft ‘ 5 ‘ConsLeft ‘ ’d’

fromZipper (Zipper hole NullCtxt) = hole
fromZipper (Zipper hole (ConsCtxt l r ctxt)) =
fromZipper (Zipper (combine l hole r) ctxt)

toZipper x = Zipper x NullCtxt

query f (Zipper hole ctxt) = f hole
trans f (Zipper hole ctxt) = Zipper (f hole) ctxt
transM f (Zipper hole ctxt) = do

hole’ ← f hole
return (Zipper hole’ ctxt)

Figure 10. Generic Zipper Non-Movement Operations.

The down function is implemented by injecting the hole into a
Left with toLeft and extracting its rightmost element. This right-
most element becomes the new hole, and the remaining elements
become the left siblings. If there is no rightmost element (i.e., the
UnitLeft case), then the original hole had no children and down-
ward movement is illegal. In that case Nothing is returned.

down (Zipper hole ctxt) =
case toLeft hole of

UnitLeft _ → Nothing
ConsLeft l hole’ →
Just (Zipper hole’ (ConsCtxt l NullRight ctxt))

The use of gfoldl is the source of two peculiarities in the imple-
mentation. First, it the reason for the Data class constraints that
appear in the Context, Left, and Right types. These constraints
ensure that we can apply gfoldl to any object that could, through
some combination of left, right, and up movements, arrive at
the hole of the zipper.
Second, because gfoldl is a left fold, the outermost ConsLeft

constructor that comes out of toLeft contains the rightmost child.
This means that the simplest implementation of down always moves
to the rightmost child. This differs from most traditional zippers,
which start at the leftmost child. If the user desires a version of
down that starts at the leftmost child, this is easily implemented by:

down’ z = liftM leftmost (down z)

6. Related Work

6.1 Generic Programming

There has been a tremendous amount of research on generic pro-
gramming and generic types [13, 27]. Here we focus on three sys-
tems that have a particularly close connection to the generic zipper.
The first is the Scrap your Boilerplate framework [20–22].

Our generic zipper builds upon and integrates smoothly with its
design and philosophy. For example, the Data class originates
there. As mentioned in Section 4, most traversals in the framework
can be reimplemented in terms of a generic zipper and are often
more straightforward with a zipper. For example, the simultane-
ous traversal of two values presented in Lämmel and Peyton Jones
[21] takes a bit of thought to construct, but with the generic zipper
the solution is trivial: use a separate zipper for each value. Scrap
your Boilerplate implements more than just traversals. It also de-
fines type-safe casts, constructor introspection, and other generic
programming facilities. The generic zipper provides only traversal,
and thus supplements the framework, but does not replace it.

The second is the Scrap your Boilerplate: Reloaded frame-
work [10, 12]. The Left type and toLeft function for the generic
zipper are equivalent to the Spine type and toSpine function from
that framework. Both share the same observation that a value can be
dissected and represented as a constructor and a list of arguments.
The generic zipper takes the extra step of splitting this list into left
siblings, right siblings, and hole.
The third is the work on heterogeneous collections by Kiselyov

et al. [17]. In our generic zipper, Right is essentially a heteroge-
neous list that uses function-arrow notation (i.e., a → b) to encode
the types it contains. Likewise Context is a heterogeneous list that
restricts the hole of one element to match the parent of another.
Thus on the surface it seems that heterogeneous collections could
be used instead of GADTs. Nevertheless, encoding the type con-
straints on heterogeneous collections is a subtle and delicate task,
and it is not clear that these particular constraints are expressible.

6.2 Zippers

The concept of a zipper is first documented by Huet [14]. That
construction limits zippers to homogeneous types where the type
of the hole is fixed and cannot change during traversal. In addition,
each type needs its own custom-written zipper type and zipper
movement functions.
This is simplified by Hinze and Jeuring [9] so that only one

function has to be rewritten for each new type, but it still operates
only on homogeneous types and requires boilerplate code.

6.2.1 One-hole Contexts

The theory behind the one-hole contexts that are part of a zipper is
extensively studied by McBride [24] and later Abbott et al. [1, 2].
They show how to express a one-hole context in terms of a formal
derivative and formalize the mechanistic generation of contexts.
This is used by Morris et al. [25] to implement a zipper for

the dependently typed language Epigram that needs no boilerplate
code. This zipper does not operate on standard user-defined types.
Instead, the types are defined in terms of an explicit representation
type Reg that expresses all types in terms of primitive type-functor
operations such as products and sums. A more detailed account is
given by Altenkirch et al. [5].
In these constructions, the type of the hole must remain fixed for

the lifetime of a zipper, but it may vary between different traversals.
So in our example from Section 3, if the types are encoded in terms
of Reg, we can either have a zipper with holes of type Name or a
zipper with holes of type Salary. A zipper cannot change mid-
traversal from Name to Salary.
Other work by McBride [23] lifts the restrictions slightly. It has

one type for values to the left of the focus and another for values to
the right. Still, the left and right types remain fixed for the lifetime
of the zipper. It does not address mutually recursive types except to
remark that they rapidly reach the limits of the techniques shown.

6.2.2 Functor-based Zippers

Work by Hinze et al. [11] and further explained by Hinze and
Jeuring [8] uses Generic Haskell to define a zipper that involves
no boilerplate code. It requires the type that the zipper traverses be
defined as the fixed-point of a type functor. Furthermore, the holes
of the resulting zipper are all the same type as the root object. For
example, the Term type from Section 2 would need to be defined
as in Figure 11. The resulting zipper has holes only of type Term.
Thus the example from Section 3, which involves both Salary and
Name holes cannot be expressed.
The MultiRec framework by Rodriguez Yakushev et al. [28]

generalizes the concept of functors to pattern functors that are
indexed by types. The type of the hole can be any type listed in
the pattern functor. The hole manipulation functions deal with the

data Fix f = Fix (f (Fix f))

data TermF term
= VarF String
| LambdaF String term
| AppF term term
| IfF term term term

type Term = Fix TermF

Figure 11. A Fixed-point Version of Term.

changing type of the hole using a trick similar to that used by trans
and query. Namely, they take as argument a transformer or query
function that is parameterized by the index of the type of the hole.
Besides handling heterogeneous types, another advantage of the

framework is it does not require the type to be rewritten in terms of
a functor. Instead the pattern functor is an auxiliary structure that
values are converted into only as needed. The framework makes
extensive use of type families [29].
The framework requires boilerplate code as each system of mu-

tually recursive types requires the declaration of a GADT, a type-
family instance, and two class instances. The authors ameliorate
this by generating most of the boilerplate with Template Haskell,
but the user must still list every type that occurs in the pattern func-
tor as a constructor of the GADT that indexes the pattern functor.
For example, in Section 3 adding an ID field to the Employee type
requires adding the ID type to the indexing GADT. Furthermore,
because theMultiRec framework focuses on systems of types, func-
tions written for one system cannot be used for another system even
when manipulating only the types that are common to both systems.
Accordingly, there are no generic lifting functions like mkQ or mkT.
Allwood and Eisenbach [3, 4] also implement a zipper for het-

erogeneous types. It is targeted specifically at the problem of imple-
menting a zipper, unlike the other functor-based zippers in this sec-
tion, which are presented only as part of general-purpose generic-
programming frameworks. The zipper requires a significant amount
of boilerplate code for each system of types to be traversed. The
code can be generated with Template Haskell, but the user must
still list all types in the system of types to be traversed. It thus has
many of the same limitations as the MultiRec framework.

6.2.3 Unusual Zippers

Kiselyov and Shan [16] take a unique approach to zippers and treat
them as delimited continuations of a traversal. These zippers can
only move one direction, forward, but other work by Kiselyov
[15] extends them to move in multiple directions by directing
traversal with a call-back. Both works consider only zippers over
homogeneous types, but they should generalize to zippers over
heterogeneous types.
Lämmel [19] defines a zipper-like Context type that does not

include sibling information. It provides context during traversal but
is not editable. It operates on heterogeneous types by use of an Any
type that hides the type of the contained object. Manipulation thus
involves a type-safe cast and a run-time type-check.

6.2.4 Summary

There are a number of existing zipper implementations, but those
that implement generic zippers all have limitations. Some require a
special encoding for types being traversed [5, 23, 25], or that types
be written in a particular form [8, 11]. Others are generic over sys-

tems of types rather than individual types [3, 4, 28]. Thus the user
must maintain a list of every type in the system and manually up-
date it whenever the types change. Furthermore, functions written
for one system are not usable in another system. Finally one zipper-
like implementation packs everything into an opaque, existential
Any type and thus uses run-time type casts everywhere [19]. Our
generic zipper has none of these limitations.

7. Conclusion

The traditional zipper is a powerful design pattern for representing
editable cursors over immutable data, but it has two major limi-
tations. First, it operates only on homogeneous types. Thus while
the traditional zipper can represent an abstract syntax tree for the
lambda-calculus where everything is an expression, it cannot repre-
sent abstract syntax trees of more complicated languages that also
include type annotations or statements. Second, it requires a sig-
nificant amount of boilerplate code. A custom Context type and
custom movement functions must be written for each type that the
zipper traverses, and these definitions are often quite long. For ex-
ample, the definition of the Term type is only five lines of code,
but defining its zipper takes thirty-eight lines. This adds significant
programming overhead and is a deterrent to using zippers.
The generic zipper presented in this paper has none of these

limitations. It operates over any type irrespective of whether it is
homogeneous or not. It requires no boilerplate code and integrates
within the existing Haskell language without a meta-level system.
The only restriction is that the types the zipper traverses must
be instances of the Data class from the Scrap your Boilerplate
framework. These instances can be generated automatically by
GHC using the deriving mechanism [7]. No other setup is required
of the programmer to use the generic zipper.
Finally, the generic zipper is applicable to more than just tradi-

tional zipper traversals. Because it is generic, it is also applicable
to generic traversals of the sort usually provided by generic pro-
gramming frameworks. Because the generic zipper represents the
current position of the traversal as a first-class value, these traver-
sals are often easier to write using the generic zipper. For example,
in the Scrap your Boilerplate framework, simultaneous traversal of
two values takes about one and a half pages to explain [21], but with
the generic zipper, it is as simple as using two zippers. Of course,
the traditional zipper has long been recognized as a powerful tool
for expressing non-generic traversals, so the power that the generic
zipper has at expressing generic traversals should come as no sur-
prise. The generic zipper merely makes this power available in the
generic case.
Despite the power that a zipper provides, in the past is has

perhaps not been used as widely as it could because it requires
a significant amount of investment by the programmer to write
a custom zipper for each type. Even then it is applicable only
when the type is homogeneous. The generic zipper, on the other
hand, requires no custom code and operates on any instance of
Data. With a lower barrier to entry, the generic zipper should
allow programmers to use a zipper in cases where previously the
programming overhead was too high.

Acknowledgments

Discussions with Perry Alexander and Gerrin Kimmell developed
ideas leading to this paper. Comments by Amr Sabry, Amal Ahmed,
Daniel P. Friedman, David S. Wise, Ramana Kumar, Lindsey Ku-
per, and the anonymous reviewers improved the presentation.

References

[1] M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of
containers. In Typed Lambda Calculi and Applications, volume 2701
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2003. doi: 10.1007/3-540-44904-3 2.

[2] M. Abbott, T. Altenkirch, C. McBride, and N. Ghani. ∂ for data:
Differentiating data structures. Fundamenta Informaticae, 65(1–2):
1–28, February–March 2005.

[3] T. O. R. Allwood and S. Eisenbach. Clase: cursor library for a struc-
tured editor. In Haskell ’08: Proceedings of the first ACM SIGPLAN
symposium on Haskell, pages 123–124, New York, NY, USA, 2008.
ACM. doi: 10.1145/1411286.1411302.

[4] T. O. R. Allwood and S. Eisenbach. Strengthening the zipper. In Pro-
ceedings of the Ninth Workshop on Language Descriptions Tools and
Applications (LDTA 2009), Electronic Notes in Theoretical Computer
Science, pages 2–17, March 2009.

[5] T. Altenkirch, C. McBride, and P. Morris. Generic programming with
dependent types. In Datatype-Generic Programming, volume 4719 of
Lecture Notes in Computer Science, pages 209–257. Springer Berlin /
Heidelberg, 2007. doi: 10.1007/978-3-540-76786-2 4.

[6] J.-P. Bernardy. Lazy functional incremental parsing. In Haskell ’09:
Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages
49–60, New York, NY, USA, 2009. ACM. doi: 10.1145/1596638.
1596645.

[7] The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 6.12.2. The GHC Team. URL http://www.haskell.org/
ghc/docs/6.12.2/html/users_guide/.

[8] R. Hinze and J. Jeuring. Chapter 2. Generic Haskell: Applications.
In Generic Programming, volume 2793 of Lecture Notes in Computer
Science, pages 57–96. Springer Berlin / Heidelberg, 2003. doi: 10.
1007/978-3-540-45191-4 2.

[9] R. Hinze and J. Jeuring. Weaving a web. Journal of Func-

tional Programming, 11(6):681–689, November 2001. doi: 10.1017/
S0956796801004129.

[10] R. Hinze and A. Löh. “Scrap your boilerplate” revolutions. In
Mathematics of Program Construction, volume 4014 of Lecture Notes
in Computer Science, pages 180–208. Springer Berlin / Heidelberg,
2006. doi: 10.1007/11783596 13.

[11] R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. In
Mathematics of Program Construction, volume 2386 of Lecture Notes
in Computer Science, pages 77–91. Springer Berlin / Heidelberg,
2002. doi: 10.1007/3-540-45442-X 10.

[12] R. Hinze, A. Löh, and B. C. d. S. Oliveira. “Scrap your boilerplate”
reloaded. In Functional and Logic Programming, volume 3945 of
Lecture Notes in Computer Science, pages 13–29. Springer Berlin /
Heidelberg, 2006. doi: 10.1007/11737414 3.

[13] R. Hinze, J. Jeuring, and A. Löh. Comparing approaches to generic
programming in Haskell. In Datatype-Generic Programming, volume
4719 of Lecture Notes in Computer Science, pages 72–149. Springer
Berlin / Heidelberg, 2007. doi: 10.1007/978-3-540-76786-2 2.

[14] G. Huet. The zipper. Journal of Functional Programming, 7(5):549–
554, September 1997. doi: 10.1017/S0956796897002864.

[15] O. Kiselyov. Tool demonstration: A zipper based file/operating sys-
tem. Presentation at the 2005 ACM SIGPLAN workshop on Haskell,
September 2005. URL http://okmij.org/ftp/Computation/
Continuations.html#zipper-fs.

[16] O. Kiselyov and C.-c. Shan. Delimited continuations in operating sys-
tems. In Modeling and Using Context, volume 4635 of Lecture Notes
in Computer Science, pages 291–302. Springer Berlin / Heidelberg,
2007. doi: 10.1007/978-3-540-74255-5 22.

[17] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed hetero-
geneous collections. In Haskell ’04: Proceedings of the 2004 ACM
SIGPLAN workshop on Haskell, pages 96–107, New York, NY, USA,
2004. ACM. doi: 10.1145/1017472.1017488.

[18] D. E. Knuth. The Art of Computer Programming, Volume I: Fun-
damental Algorithms, page 562. Addison-Wesley, 1st edition, 1968.
ISBN 0-201-03801-3.

[19] R. Lämmel. Scrap your boilerplate with XPath-like combinators. In
POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 137–142,
New York, NY, USA, 2007. ACM. doi: 10.1145/1190216.1190240.

[20] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical de-
sign pattern for generic programming. In TLDI ’03: Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages
design and implementation, pages 26–37, New York, NY, USA, 2003.
ACM. doi: 10.1145/604174.604179.

[21] R. Lämmel and S. Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In ICFP ’04: Proceedings of the ninth
ACM SIGPLAN international conference on Functional programming,
pages 244–255, New York, NY, USA, 2004. ACM. doi: 10.1145/
1016850.1016883.

[22] R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class:
extensible generic functions. In ICFP ’05: Proceedings of the tenth
ACM SIGPLAN international conference on Functional programming,
pages 204–215, New York, NY, USA, 2005. ACM. doi: 10.1145/
1086365.1086391.

[23] C. McBride. Clowns to the left of me, jokers to the right (pearl): dis-
secting data structures. In POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 287–295, New York, NY, USA, 2008. ACM. doi:
10.1145/1328438.1328474.

[24] C. McBride. The derivative of a regular type is its type of one-
hole contexts. Unpublished manuscript, 2001. URL http://
strictlypositive.org/diff.pdf.

[25] P. Morris, T. Altenkirch, and C. McBride. Exploring the regular tree
types. In Types for Proofs and Programs, volume 3839 of Lecture

Notes in Computer Science, pages 252–267. Springer Berlin / Heidel-
berg, 2006. doi: 10.1007/11617990 16.

[26] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP ’06: Proceed-
ings of the eleventh ACM SIGPLAN international conference on Func-

tional programming, pages 50–61, New York, NY, USA, 2006. ACM.
doi: 10.1145/1159803.1159811.

[27] A. Rodriguez Yakushev, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov,
and B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In Haskell ’08: Proceedings of the first ACM SIGPLAN
symposium on Haskell, pages 111–122, New York, NY, USA, 2008.
ACM. doi: 10.1145/1411286.1411301.

[28] A. Rodriguez Yakushev, S. Holdermans, A. Löh, and J. Jeur-
ing. Generic programming with fixed points for mutually recursive
datatypes. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN in-
ternational conference on Functional programming, pages 233–244,
New York, NY, USA, 2009. ACM. doi: 10.1145/1596550.1596585.

[29] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In ICFP ’08: Proceeding
of the 13th ACM SIGPLAN international conference on Functional
programming, pages 51–62, New York, NY, USA, 2008. ACM. doi:
10.1145/1411204.1411215.

[30] T. Sheard and S. P. Jones. Template meta-programming for Haskell.
In Haskell ’02: Proceedings of the 2002 ACM SIGPLAN workshop
on Haskell, pages 1–16, New York, NY, USA, 2002. ACM. doi:
10.1145/581690.581691.

[31] D. Stewart. Roll your own window manager: Tracking focus with a
zipper. Unpublished manuscript, May 2007. URL http://cgi.cse.
unsw.edu.au/~dons/blog/2007/05/17.

