
Optimizing SYB Is Easy!

Michael D. Adams

Department of Computer Science,
University of Illinois at

Urbana-Champaign

http://michaeldadams.org/

Andrew Farmer

Information and Telecommunication
Technology Center, University of Kansas

afarmer@ittc.ku.edu

José Pedro Magalhães

Department of Computer Science,
University of Oxford

jpm@cs.ox.ac.uk

Abstract

The most widely used generic-programming system in the Haskell
community, Scrap Your Boilerplate (SYB), also happens to be one
of the slowest. Generic traversals in SYB are often an order of mag-
nitude slower than equivalent handwritten, non-generic traversals.
Thus while SYB allows the concise expression of many traversals,
its use incurs a significant runtime cost. Existing techniques for op-
timizing other generic-programming systems are not able to elimi-
nate this overhead.

This paper presents an optimization that completely eliminates
this cost. Essentially, it is a partial evaluation that takes advantage
of domain-specific knowledge about the structure of SYB. It opti-
mizes SYB-style traversals to be as fast as handwritten, non-generic
code, and benchmarks show that this optimization improves the
speed of SYB-style code by an order of magnitude or more.

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Partial
evaluation

Keywords optimization; partial evaluation; datatype-generic pro-
gramming; Haskell; Scrap Your Boilerplate (SYB); performance

1. Introduction

Scrap Your Boilerplate (SYB) (Lämmel and Peyton Jones 2003,
2004) is one of the oldest and most widely used systems for generic
programming in Haskell. It is the most downloaded package for
generic programming in the Hackage archive (Industrial Haskell
Group 2013). It is easy to use and has strong support from the
Glasgow Haskell Compiler (GHC) (GHC Team 2013).

While SYB allows the easy and concise expression of traversals
that otherwise require large amounts of handwritten code, it has
a serious drawback, namely, poor runtime performance. Our own
benchmarks show it to be an order of magnitude slower than hand-
written, non-generic code, and this fact is documented many times
in the literature (Rodriguez Yakushev 2009; Brown and Sampson
2009; Chakravarty et al. 2009; Magalhães et al. 2010; Adams and
DuBuisson 2012; Sculthorpe et al. 2013b).

While attempts have been made in the past to use general-
purpose optimizations to improve the performance of SYB, they

Copyright c© ACM, 2014. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in PEPM ’14: Proceedings of the ACM SIGPLAN

2014 Workshop on Partial Evaluation and Program Manipulation, January 2014,
http://dx.doi.org/10.1145/2543728.2543730.

PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543730

have met with only moderate success. For example, while setting
the compiler’s optimizer to be exceptionally aggressive about un-
folding and inlining can slightly improve the performance of SYB,
doing so can harm the performance of the program as a whole as
code may be inlined that should not be (Magalhães et al. 2010).

Nevertheless, SYB-style code exhibits a structure that we can
take advantage of in our optimizations. This paper presents a
domain-specific optimization that transforms SYB-style code to
be as fast as handwritten code. This optimization uses the types
of expressions to direct where the inlining process should be more
aggressive. In essence, it is a specialized form of supercompila-
tion (Turchin 1979) and partial evaluation (Jones et al. 1993) that
uses type information to determine whether an expression should
be computed statically at compile time or dynamically at runtime.
Using this technique and domain-specific knowledge about the
structure of the SYB library and the code that uses it, we show
that optimizing SYB-style code can be easily implemented with
standard transformations.

This optimization is implemented using HERMIT (Farmer et al.
2012; Sculthorpe et al. 2013a), an interactive optimization sys-
tem implemented as a GHC plugin. HERMIT makes it easy to
quickly develop these sorts of optimizations, and we see our op-
timization as a prototype which can guide future improvements
to the GHC optimizer. The code for this optimization is avail-
able at https://github.com/xich/hermit-syb and as the
hermit-syb package on Hackage.

The remainder of this paper is organized as follows. We start
with an overview of SYB in Section 2. In Section 3 we show a
step-by-step “manual” optimization of an SYB program. This is
followed by a formal description of our optimization in Section 4.
In Section 5 we discuss an implementation of the optimization for
GHC and present benchmarks validating its effectiveness. This is
followed in Section 6 by a discussion of the limitations and future
work for our system. Finally, we review related work in Section 7,
and conclude in Section 8.

2. Overview of SYB

In order to understand why SYB is slow, we must first understand
how it works. SYB is a generic-programming system for concisely
expressing traversals. For example, suppose we have a type of ab-
stract syntax trees, AST, and wish to apply a name mangling func-
tion, mangle, to every identifier in a given AST. Writing this by
hand requires a large amount of “boilerplate” code that merely re-
curs until we get to an identifier where we can apply mangle. With
SYB, however, we can use the everywhere and mkT functions to
write this traversal simply as everywhere (mkT mangle).

SYB defines many traversals in addition to everywhere, and
the optimization presented in this paper handles these, but for the
sake of simplicity our examples will focus on the everywhere
traversal. In addition, since traversals over an AST type can be

1

unwieldy, we use the following traversal over slightly simpler types
as our running example.

inc :: Int -> Int
inc n = n + 1

incrementSYB :: [Int] -> [Int]
incrementSYB x = everywhere (mkT inc) x

This traversal applies inc to every object in x that has type Int and
thus increments every integer in a list of integers.

We now turn to how mkT and everywhere work before consid-
ering the question of why this SYB-style traversal is slower than an
equivalent handwritten traversal.

2.1 Transformations

The mkT function applies a transformation f to a term x if the
types are compatible. Otherwise, it behaves as an identity function
and simply returns x. Its definition relies on the type-safe casting
function cast, which in turn is defined in terms of the typeOf
method provided by the Typeable class. The implementation of
these functions is equivalent to the following although the actual
implementation of mkT goes through several intermediate helper
functions that are not shown here.

mkT :: (Typeable a, Typeable b)
=> (b -> b) -> a -> a

mkT f = case cast f of
Nothing -> id
Just g -> g

cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r where

r = if typeOf x == typeOf (fromJust r)
then Just (unsafeCoerce x)
else Nothing

The typeOf function used in this code returns a value of type
TypeRep representing the type of its argument. The value of its
argument is ignored. The unsafeCoerce function has type ∀a b.
a -> b and unconditionally coerces a value of one type to another
type. Its use in this code is safe because of the check that the types
a and b are indeed the same.

2.2 Traversals

The everywhere function traverses a structure in a bottom-up
fashion and is implemented as follows.

everywhere :: (∀b. Data b => b -> b)
-> (∀a. Data a => a -> a)

everywhere f x = f (gmapT (everywhere f) x)

It uses gmapT to apply everywhere f to every subterm of x, and
afterwards it applies f to the result. The gmapT function applies
a transformation to all the immediate subterms of a given term,
and we discuss its implementation in Section 2.3. It does not it-
self recurse past the first layer of children, but by calling it with
everywhere f as an argument, the everywhere function recurses
to all the descendants of x in a bottom-up fashion.

2.3 Mapping subterms

The type of gmapT is the same as that of everywhere. The impor-
tant difference is that gmapT is not recursive, and transforms only
the immediate subterms of a term. For any constructor C with n
arguments, gmapT obeys the following equality.

gmapT f (C x1...xn) = C (f x1) ... (f xn)

The function gmapT is a method of the Data class, and has a default
implementation in terms of the SYB primitive gfoldl, which has
the following type.

gfoldl :: (Data a)
=> (∀d b. Data d => c (d -> b) -> d -> c b)
-> (∀g. g -> c g) -> a -> c a

This is a method of the Data class so its implementation is different
for every type, but the general structure of such implementations
can be seen in the following class instance for lists.

instance Data a => Data [a] where
gfoldl k z [] = z []
gfoldl k z (x:xs) = z (:) ‘k‘ x ‘k‘ xs

The gfoldl function takes three arguments. The first, k, combines
an argument with the constructor. The second, z, is applied to the
constructor itself. Finally, the third is the value over which the
gfoldl method traverses. The implementation always follows the
same pattern. For any constructor C with n arguments, gfoldl
obeys the following equality.

gfoldl k z (C x1...xn) = z C ‘k‘ x1 ... ‘k‘ xn

While extremely general, gfoldl is not easy to use directly. How-
ever, generic functions such as gmapT that are easier to use can be
built in terms of it. Returning to gmapT, its default implementation
is defined in terms of gfoldl as follows.

gmapT :: (∀b. Data b => b -> b)
-> (∀a. Data a => a -> a)

gmapT f x = unID (gfoldl k ID x) where
k (ID c) y = ID (c (f y))

newtype ID x = ID { unID :: x }

Since gmapT does not need to take advantage of the type changing
ability provided by the c type parameter to gfoldl, it instantiates
c to the trivial type ID. Aside from wrapping and unwrapping ID,
gmapT operates by using k to rebuild the constructor application
after applying f to each constructor argument and thus obeys the
previously given equality for gmapT.

2.4 Why SYB is slow

The slow performance of SYB is well documented. Rodriguez Yaku-
shev (2009, Figure 4.9) benchmarked three SYB functions, and
found them to be 36, 52, and 69 times slower than handwritten
code. Chakravarty et al. (2009) also benchmark SYB on three
functions, finding them to be 45, 73, and 230 times slower than
handwritten code. Brown and Sampson (2009) developed a new
generic-programming library because SYB was too slow and found
SYB to be 4 to 23 times slower than their own approach. Maga-
lhães et al. (2010) report SYB performing between 3 and 20 times
slower than handwritten code. Adams and DuBuisson (2012) de-
veloped an optimized variant of SYB using Template Haskell and
report SYB performing between 10 and nearly 100 times slower
than handwritten code. Sculthorpe et al. (2013b) benchmark SYB
on two generic traversals, finding it to be around 5 times slower
than handwritten code. All of these papers conclude that SYB is
one of the slowest generic-programming libraries.

After analyzing how SYB works, these results should not be
surprising. Consider for example, the runtime behavior of the
incrementSYB function. When applied to a value of type [Int]
such as [0,1], it recurses down the structure while applying mkT
inc to every subterm. In this case, there are five subterms. Three
of them are the lists [0,1], [1] and []. The remaining two are the
Int values 0 and 1. For each subterm, mkT attempts to cast inc to

2

have a type that is applicable to that subterm. On the lists, it fails
to do so, and thus mkT returns them unchanged. On the Int values,
however, the cast succeeds, and thus mkT applies inc to them. This
process involves significant overhead as it uses five dynamic type
checks in order to update only two values.

Existing techniques for optimizing other generic-programming
libraries are unable to eliminate this overhead in SYB-style code.
Since SYB relies heavily on runtime type comparison, the type spe-
cializer cannot guide the optimization as it does in the work of Ma-
galhães (2013). Instead, in order to find out if inc can be applied to
a term, we must inline mkT, cast, and the Typeable methods all
the way to the comparison of the type representation computed for
the type of a term. If all of those are appropriately inlined, mkT inc
reduces to either inc or id depending on whether the types match.
However, the GHC inliner (Peyton Jones and Marlow 2002), while
often eager to inline small expressions, will not perform as aggres-
sive an inlining as is required here. Coercing GHC to inline aggres-
sively has the side-effect of inlining parts of the code that were not
intended to be inlined (Magalhães et al. 2010). Furthermore, be-
cause everywhere is a recursive function, GHC avoids inlining it
in order to ensure termination of the inlining process. Even if GHC
would inline recursive definitions, it would have to do so in a way
that avoids infinitely inlining nested recursive occurrences. Imple-
menting these optimizations would require fundamental changes to
the way the inliner behaves, and their applicability to non-SYB-
style code is not clear.

3. Optimizing SYB-style code

In order to gain an intuition for optimizing SYB-style code, we
now consider the incrementSYB function from Section 2 and how
we can manually transform it into non-generic code. Our goal is to
reach the following more efficient non-generic implementation that
avoids the runtime casts and dictionary dispatches that slow down
the code as discussed in Section 2.4.

incrementHand :: [Int] -> [Int]
incrementHand [] = []
incrementHand (x : xs) =

inc x : incrementHand xs

In order to optimize incrementSYB, we can exploit the fact
that, due to the types of incrementSYB and inc, the concrete
types and dictionaries needed by everywhere and mkT are known
at compile time. These can be aggressively inlined, yielding code
without any dynamic type checks or runtime casts. In Haskell,
type and dictionary arguments are implicit. In order to make them
explicit, we represent incrementSYB in terms of Core, which is
the intermediate representation on which GHC does most of its
optimizations. The result is the following.

incrementSYB :: [Int] -> [Int]
incrementSYB = λ x �

everywhere
(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

[Int] $dData x

Explicit type arguments are highlighted here in green, and we
elide type coercions as they make the code difficult to read. In the
following, we also skip many intermediate transformations as the
full derivation requires several hundred steps.

In this code, the $dData and $dTypeableInt variables are
Data and Typeable dictionaries that were previously implicit. The
$p1Data b0 $dData0 expression computes the Typeable dictio-
nary corresponding to $dData0. We will see more such expressions
as we proceed.

Since the dynamic type checks in mkT cause this code to be
slow, we could try inlining mkT immediately. However, we would
not have enough information to eliminate these checks if we did
so as b0 and $dData0 do not yet have values and thus we do
not know enough about the arguments to which mkT is applied.
Instead, in order to get the λ-expression containing mkT to a fully
applied position, we inline everywhere, the function to which it is
an argument. This results in the following.

incrementSYB :: [Int] -> [Int]
incrementSYB = λ x �

mkT Int [Int] ($p1Data [Int] $dData) $fTypeableInt inc
(gmapT [Int] $dData

(λ b1 $dData1 �

everywhere
(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

b1 $dData1)
x)

The call to mkT at the beginning of this code can now be inlined,
and this exposes a call to cast.

incrementSYB :: [Int] -> [Int]
incrementSYB =
let $dTypeable4 = ...

$dTypeable5 = ...
in λ x �

(case cast (Int -> Int) ([Int] -> [Int])
$dTypeable5 $dTypeable4 inc of wild

Nothing � id [Int]
Just g0 � g0)
(gmapT [Int] $dData

(λ b1 $dData1 �

everywhere
(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

b1 $dData1)
x)

This code attempts to cast inc from type Int -> Int to type
[Int] -> [Int] by using the cast function. Inlining cast ex-
poses calls to typeOf that we can symbolically evaluate. After
several more simplification steps, this call to cast reduces to
Nothing, and in turn the case statement can be reduced to the
identity function. Thus, we have removed one of the runtime type
comparisons that slow down this code, and after simplification, the
code now looks like the following.

incrementSYB :: [Int] -> [Int]
incrementSYB = λ x �

gmapT [Int] $dData
(λ b1 $dData1 �

everywhere
(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

b1 $dData1)
x

Here again we choose not to inline the λ-expression containing mkT
since it is not fully applied. Instead we inline gmapT and get the
following code.

incrementSYB :: [Int] -> [Int]
incrementSYB = λ x �

case x of wild
[] � [] Int
(:) x0 xs0 �

(:) Int

3

(everywhere
(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

Int $fDataInt x0)
(everywhere

(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

[Int] $dData xs0)

Since the eliminated gmapT is a class method, this inlin-
ing is particular to the type at which gmapT is applied. In this
case it is over the list type, and gmapT inlines to a case ex-
pression over lists. As this case expression corresponds to the
one in incrementHand, we can now recognize the structure of
incrementHand becoming manifest in the code.

The code now contains two calls to everywhere that are inside
the (:) branch of the case expression. One is on the head of the
list and is at the type Int. The other is on the tail of the list and is
at the type [Int]. We can inline the first of these which results in
calls to mkT and gmapT just as before. This time, however, they are
over the Int type. Thus, not only does the cast in mkT succeed and
the mkT reduce to inc, but the call to gmapT reduces to the identity
function. After a bit of simplification, the code now looks like the
following.

incrementSYB :: [Int] -> [Int]
incrementSYB = λ x �

case x of wild
[] � [] Int
(:) x0 xs0 �

(:) Int
(inc x0)
(everywhere

(λ b0 $dData0 �

mkT Int b0 ($p1Data b0 $dData0)
$fTypeableInt inc)

[Int] $dData xs0)

Thus far we have eliminated several runtime costs merely by inlin-
ing and some basic simplifications, and this has brought us close to
our goal of transforming incrementSYB into incrementHand.
The only generic part of the code that remains is the call to
everywhere on the tail of the list. While it is tempting to also
inline this call, this expression is the same one that incrementSYB
started with, and continuing to inline will thus lead us in a loop. In-
stead, we can take advantage of the fact that incrementSYB equals
this expression and replace it with a reference to incrementSYB.
Once we perform that replacement, we get the following code,
which is identical to that of incrementHand.

incrementSYB :: [Int] -> [Int]
incrementSYB = λ x �

case x of wild
[] � [] Int
(:) x0 xs0 � (:) Int (inc x0) (incrementSYB xs0)

4. A more principled attempt

The transformation in Section 3 is achieved by a simple combina-
tion of inlining, memoization, simplification and symbolic evalu-
ation. In order to automate it, we must be precise about what we
choose to inline, memoize, and evaluate. For a general-purpose op-
timization, designing such a heuristic is hard. However, because we
are optimizing a particular style of code, namely SYB-style code,
we can take advantage of domain-specific knowledge.

We express these transformations in terms of System FC (Vy-
tiniotis et al. 2012), the formal language corresponding to GHC’s
Core language. Figure 1 presents the relevant parts of the syntax of

e, u := x Variables

| l Literals

| Λa : κ. e | e τ Type abstraction and application

| λx : σ. e | e1 e2 Term abstraction and application

| K | case e0 of
−−−−→pi → ei Constructors and case matching

| let−−−−−→x : τ = e inu Local variable binding

| e ⊲ γ Casts

| ⌊γ⌋ Coercions as expressions

p := K −−→x : τ Patterns

τ := a | ∀a : κ.τ | τ1 τ2 | . . . Types

κ := ⋆ | # | κ → κ Kinds

γ := sym γ Symmetry rule for coercions

| nth 1 γ Arg part of function coercion

| nth 2 γ Result part of function coercion

| γ@τ Type application for coercions

| . . .

Figure 1. Syntax of System FC (Excerpt)

System FC , and Figure 2 presents some of the core reduction rules
of System FC . For simplicity of presentation these figures omit
aspects of System FC that are not relevant to the optimization con-
sidered in this paper. In particular, System FC contains additional
types and coercions not listed in Figure 1, as well as additional re-
ductions and machinery for specifying the evaluation contexts for
the reduction rules in Figure 2.

At a high level, the complete optimization can be summarized
as follows. The details and rationale of the individual steps are
explained in the remainder of this section.

Algorithm 1. [SYB Optimization] Repeatedly loop until none of
the following rules apply. On each loop choose the first rule that
applies.

1. Replace any expression with a memoization that it matches as
discussed in Section 4.2.

2. Simplify any expression using the rules from Figure 7 as dis-
cussed in Section 4.3.

3. Evaluate any primitive call using the rules from Figure 9 as
discussed in Section 4.4.

4. (OPTIONAL) Eliminate any case expression over a manifest
constructor as discussed in Section 4.5.1.

5. (OPTIONAL) Float memoization bindings if possible as dis-
cussed in Section 4.5.2.

6. Choose the outermost expression at which we can do either of
the following as discussed in Section 4.1.

(a) Memoize an expression having an undesirable type using
the rules from Figure 5.

(b) Eliminate an expression having an undesirable type using
the rules from Figure 4.

Note that our optimization relies on later optimizations already in
GHC to further clean up the resulting code after our optimization
completes. For example, it may leave behind unused memoization
bindings that downstream optimizations will eliminate. In addition,
steps 4 and 5 of this algorithm are optional in that they reduce
the work that the optimization has to do but are not essential for
eliminating expressions that have undesirable types.

4

BETA (λx : τ. e1) e2 e1 [e2/x]

TYBETA (Λa : κ. e) τ e [τ/a]

CASEBETA caseK ~ei of . . .K −−−→xi : τi → ej . . . ej
[−−−→
ei/xi

]

PUSH (e1 ⊲ γ) e2 (e1 (e2 ⊲ sym (nth 1 γ))) ⊲ (nth 2 γ)

TYPUSH (e ⊲ γ) τ (e τ) ⊲ (γ@τ)

Figure 2. Reductions of System FC (Excerpt)

e : τ Expression typing

γ : τ1 ∼ τ2 Coercion typing

e e′ System FC evaluation step (See Figure 2)

e e′ Optimization step (See Figures 4, 5 and 7)

e
γ
→֒ e′ Symmetric cast elimination (See Figure 8)

e ̇ e′ Force step (See Figures 6 and 9)

e ̈ e′ Deep force step (See Figure 9)

Und τ Undesirable type

ElimUnd e Elimination expression (See Figure 4)

Memo e Memoizable expression (See Figure 5)

Figure 3. Judgments

With the benchmarks in Section 5 we show that this algorithm
successfully optimizes typical SYB-style code to be as fast as hand-
written code. Remarkably, this optimization algorithm requires no
changes to the standard SYB library other than what is necessary
to ensure inlining information is available for the appropriate meth-
ods, operators and traversals defined by SYB.

4.1 Elimination of expressions with undesirable types

In Section 2.4, we identified the presence of expressions with
certain types as a source of performance problems in SYB-style
code. However, the transformations performed in Section 3 al-
lowed us to eliminate expressions with those types from the code
for incrementSYB. One of the primary goals of our optimization
then is eliminating these occurrences. In particular, objects of type
TypeRep, as well as the TyCon objects used to construct them, slow
down the code when they are used to compare types at runtime. In
addition, the Data and Typeable dictionaries contain functions
that may generate and manipulate TypeRep and TyCon objects. Fi-
nally, the default implementations of several of the methods in the
Data class use newtype wrappers such as ID that interfere with
the optimization process and should also be eliminated.

In Section 3, we were able to eliminate expressions that have
these undesirable types by a combination of inlining and simplifi-
cation. Moreover, the only inlining operations necessary were ones
that eliminated such expressions. Thus we can design a heuris-
tic that focuses on expressions that both have these types and are
in elimination positions. Expressions in elimination positions are
those that are arguments to function applications, scrutinees of
case expressions, and the bodies of casts. If we can simplify the ex-
pression far enough to be able to apply the BETA or the CASEBETA

rules in Figure 2 or expose nested casts that cancel each other out,

ElimUnd e e ̇ e′

e e′
ELIMUND

e1 : τ1 → τ2 Und τ1

ElimUnd (e1 e2)
ELIMUNDAPP

e0 : τ Und τ

ElimUnd (case e0 of
−−−−→p → ei)

ELIMUNDCASE

e : τ Und τ

ElimUnd (e ⊲ γ)
ELIMUNDCAST

Figure 4. Undesirably Typed Expression Elimination

ElimUnd e e ̇ e′ Memo e x /∈ fv
(

e′
)

e letx : τ = e′ inx
MEMOUND

Memox
MEMOUNDVAR

Memo e1

Memo (e1 e2)
MEMOUNDAPP

Memo e1

Memo (e1 τ)
MEMOUNDTYAPP

Figure 5. Undesirably Typed Expression Memoization

we can eliminate those occurrences and thus remove the expres-
sions with undesirable types from our code.

Essentially what we need to do is symbolically evaluate these
expressions until they are values and then apply the appropriate re-
duction rules to the elimination forms. Formally this is specified
by the ELIMUND rule in Figure 4. If e is an elimination form for
an expression with an undesirable type and we can symbolically
evaluate e to e′, then the optimization simplifies e to e′. The elimi-
nation forms are specified in the ELIMUNDAPP, ELIMUNDCASE,
and ELIMUNDCAST rules, and the rules for forcing a step of eval-
uation are specified in Figure 6. These rules use the Und τ judg-
ment, which holds if and only if the type τ syntactically contains
an occurrence of an undesirable type. The inference rules for the
Und τ judgment are omitted as they are straightforward. In ad-
dition, we will use typing judgments for expressions, e : τ , and

5

FORCEBETA (λx : τ. e1) e2 ̇ letx : τ = e2 in e1

FORCETYBETA (Λa : κ. e) τ ̇ let a : κ = τ in e

FORCECASEBETA caseK ~ei of . . .K −−−→xi : τi → ej . . . ̇ let−−−−−−−→xi : τi = ei in ej

FORCEPUSH (e1 ⊲ γ) e2 ̇ (e1 (e2 ⊲ sym (nth 1 γ))) ⊲ (nth 2 γ)

FORCETYPUSH (e ⊲ γ) τ ̇ (e τ) ⊲ (γ@τ)

FORCEVAR x ̇ e if e is the inlining of x

FORCELETFLOATAPP (let−−−−−−→x : τ = ei in e0) u ̇ let−−−−−−→x : τ = ei in e0 u

FORCELETFLOATSCR case (let−−−−−−→x : τ = u in e0) of
−−−−→pi → ei ̇ let−−−−−−→x : τ = u in (case e0 of

−−−−→pi → ei)

FORCEAPPFUN e1 e2 ̇ e′1 e2 if e1 ̇ e′1

FORCEAPPTYFUN e1 τ ̇ e′1 τ if e1 ̇ e′1

FORCESCR case e0 of
−−−−→pi → ei ̇ case e′0 of

−−−−→pi → ei if e0 ̇ e′0

FORCELETBODY let−−−−−−−→xi : τi = ui in e ̇ let−−−−−−−→xi : τi = ui in e′ if e0 ̇ e′0

FORCECAST e ⊲ γ ̇ e′ ⊲ γ if e ̇ e′

Figure 6. Forcing Rules

coercions, γ : τ1 ∼ τ2. These judgments respectively assert that
expression e has type τ and that the coercion γ casts type τ1 to
type τ2. The inference rules for these typing judgments are omit-
ted as they are standard in System FC . In these and other rules,
we elide details about the environment as it is not relevant to the
optimization other than to support the typing judgments.

Finally, Figure 6 gives the FORCEBETA, FORCETYBETA,
FORCECASEBETA, FORCEPUSH, and FORCETYPUSH rules, which
implement symbolic evaluation for the BETA, TYBETA, CASEBETA,
PUSH, and TYPUSH reduction rules respectively. The FORCEBETA,
FORCETYBETA, and FORCECASEBETA rules avoid code du-
plication by introducing let bindings instead of substituting.
It is then up to FORCEVAR to inline forced variables at their
use sites. In order to ensure that the let forms in the code
do not interfere with the optimization process, we also intro-
duce the rules FORCELETFLOATAPP and FORCELETFLOATSCR

which float let bindings out of the way so that other rules
can fire. The FORCEAPPFUN, FORCEAPPTYFUN, FORCESCR,
FORCELETBODY, and FORCECAST rules implement structural
congruences that allow the forcing process to recur down the ex-
pression. The guiding principle in all these rules is to make the
smallest transformation necessary to expose an expression form
that can be eliminated.

4.2 Memoization

In Section 3, we needed to recognize the repeated occurrence of
everywhere (mkT inc) and replace it with a variable reference
bound to an equivalent expression. Essentially this is a memoiza-
tion of the inlining process. Without such memoization, the recur-
sive structure of everywhere makes the optimization diverge.

Rather than performing a deep analysis of what inlinings and ex-
pansions should be memoized, we adopt the very simple strategy of
memoizing when the expression e in ELIMUND is the application
of a variable to one or more arguments. Thus we have MEMOUND

in Figure 5. This rule has higher priority than ELIMUND and should
be used instead of that rule whenever possible. This strategy may
lead to unnecessary extra memoization bindings, but as long as
those binding do not get in the way of our other optimizations, this
is not a concern.

Note that we memoize inlinings only when they eliminate an
expression with an undesirable type. The reason for this is that we
want to memoize only code that would have triggered ELIMUND

and not necessarily every intermediate expression.
When MEMOUND fires we also add e to a memoization table

and if e ever occurs again, we replace it with x. We detect reoccur-
rences only when an expression is manifestly equal to e as we use a
simple, syntactic comparison modulo alpha equivalence. For exam-
ple if e is the expression mkT f, then we do not consider mkT f’ to
be a reoccurrence of e even if f’ is bound to f. While in theory the
optimization could as a result miss opportunities to take advantage
of the memoization, in practice there are only a few ways that this
happens in SYB-style code, and they are automatically eliminated
by the other simplifications in the optimization.

4.3 Simplification

As we symbolically evaluate the code, detritus can build up in
the form of dead and trivial let bindings and unnecessary casts.
Though in some cases we can leave the elimination of these for later
optimization passes in the compiler, some of these let bindings
and casts get in the way of the core optimization rules from Figure 4
and Figure 5. In the example in Section 3, many of the intermediate
simplifications were omitted in order to focus on the core aspects of
the optimization, but now we formally specify these by applying the
simplifications from Figure 7 to the code as we are optimizing it.
These simplifications are chosen based on an empirical observation
of the sort of code generated when optimizing SYB-style code and
what forms need to be simplified in that process. While there are
a number of other simplifications that could be used, we restrict
ourselves to a minimal number of conservative simplifications that
never make the code worse while still being sufficient to enable the
core optimization rules.

4.3.1 Cast elimination

GHC’s implementation of class dictionaries and newtype defini-
tions makes use of casts. When inlining a class method or a com-
putation that involves a newtype, these casts appear in the code and
get in the way of the core optimization rules. For example, it often
happens that the inlining of a class method results in the scrutinee

6

CASTREFL e ⊲ γ e if γ : τ ∼ τ

CASTSYM e ⊲ γ e′ if e
γ
→֒ e′

DEADLET letx : τ = u in e e if x /∈ fv (e) and x

is not a memoization

SUBSTSTAR letx : ⋆ = τ in e e [τ/x]

SUBSTHASH letx : # = τ in e e [τ/x]

SUBSTVAR letx : τ = x′

in e e
[

x′/x
]

SUBSTLIT letx : τ = l in e e [l/x]

SUBSTDFUN letx : τ = v ~u in e e [v ~u/x] if v is a

dictionary constructor

Figure 7. Simplifications

of a case containing a reflexive cast wrapped around a constructor.
Until we eliminate the cast, we cannot use the FORCECASEBETA

rule even though the constructor involved is already manifest.
In SYB-style code, there are two sorts of such casts that arise.

The first is a reflexive cast from a type to itself. These are directly
eliminated by the CASTREFL rule. The second way casts can be
eliminated is when symmetric casts are nested inside each other.
In some cases, these symmetric casts may be separated from each
other by intermediate forms as in the following example where
γ1 : τ1 ∼ τ2 and γ2 : τ2 ∼ τ1.

(casexof {C1 → e1 ⊲ γ2;C2 → e2 ⊲ γ2}) ⊲ γ1

Simplifying this expression is accomplished by the CASTSYM rule.

This rule uses the e
γ
→֒ e′ judgment in Figure 8 and reduces this

expression to the following.

casexof {C1 → e1;C2 → e2}

4.3.2 Let elimination

We also eliminate let bindings that are either trivial, dead or
bind a type as they may interfere with our ability to apply the
core optimization rules. These are implemented by the remaining
rules in Figure 7. Note that when doing this we are careful to not
eliminate bindings introduced by memoization. In particular, due to
the way that GHC implements class dictionaries, it is quite common
for a memoized call to expand to another memoized call in a way
that results in the memoized binding for the original call becoming
trivial. We must avoid eliminating these as the memoization process
may add new references to such bindings.

4.4 Primitives

Recall that the cast function is implemented by testing the equality
of two TypeRep objects returned by calls to typeOf. This typeOf
operator is implemented in terms of fingerprintFingerprints,
which computes unique hashes for TypeRep objects. Furthermore,
equality over these objects is implemented in terms of the eqWord#
primitive. As we are attempting to eliminate the dynamic dis-
patches implemented by cast, it is important that we eliminate
calls to these primitives. In order to do so, our optimization fully
evaluates the arguments to these functions when attempting to force
an expression. Once those arguments are fully evaluated, the calls
themselves are statically evaluated. The rules that implement this
are specified in Figure 9. These rules effectively implement con-
stant folding for these operators.

γ : τ ∼ τ ′ γ′ : τ ′ ∼ τ

e ⊲ γ′
γ
→֒ e

CASTSYMCAST

γ : (τ1 → τ2) ∼
(

τ1 → τ ′

2

)

e
nth 2 γ
→֒ e′

λx : τ. e
γ
→֒ λx : τ. e′

CASTSYMFUN

e
γ
→֒ e′

let−−−−−−→x : τ = ei in e
γ
→֒ let−−−−−−→x : τ = ei in e′

CASTSYMLET

−−−−−→
ei

γ
→֒ e′i

case eof −−−−→p → ei
γ
→֒ case eof

−−−−→
p → e′i

CASTSYMCASE

Figure 8. Cast Symmetry Rules

4.5 Optional optimizations

While not essential to the core optimization and the elimination of
expressions with undesirable types, there are certain transforma-
tions that help keep the generated code compact and reduce the
amount of work to be done by the optimization.

4.5.1 Case reduction

SYB-style traversals are based on the idea of dispatching to dif-
ferent code depending on the current type being traversed. At its
core, this is what the mkT function is for. When optimizing SYB-
style code, this often results in intermediate residual code with a
structure similar to the following.

case typeOf t1 == typeOf t2 of
True -> ...
False -> ...

The equality operator in this code is over the undesirable type
TypeRep, so the optimization will reduce it to either True or
False. After that, the scrutinee no longer contains an expression
with an undesirable type, so the core optimization does not then
simplify the case expression even though it has a known construc-
tor in its scrutinee. In most cases this is not a problem as the code to
be optimized under each branch of the case expression tends to be
small and we can simply rely on downstream optimizations to sim-
plify the case expression. However, when these branches are large,
they can represent a significant amount of extra work to be done by
the optimization. It would be better to detect the dead branch and
skip the extra work in that branch. To do this we apply the rewrite
in FORCECASEBETA whenever possible. This rewrite never makes
the code worse or worsens the optimization result. Note that our
use of this rewrite differs from the usual use of the rules in Fig-
ure 6 since we apply it at any position in the expression regardless
of whether it eliminates an expression with an undesirable type.

4.5.2 Memoization floating

Duplicate memoizations of the same expression may arise if the
first memoization is not in scope at the other occurrences of the
same expression. For example, when traversing an abstract syntax
tree, memoizations of the traversal at the identifier type may occur
inside both the part of the code for λ-expressions and the part
of the code for let expressions. If neither of these is within the
scope of the other, the memoization rule will result in creating fresh
memoizations of the traversal on identifiers for each expression

7

PRIMFF fingerprintFingerprints e ̇ JfingerprintFingerprints eK if e is a value

PRIMFFARG fingerprintFingerprints e ̇ fingerprintFingerprints e′ if e ̈ e′

PRIMEQWORD eqWord# e1 e2 ̇ JeqWord# e1 e2K if e1 and e2 are values

PRIMEQWORDARG1 eqWord# e1 e2 ̇ eqWord# e′1 e2 if e1 ̈ e′1

PRIMEQWORDARG2 eqWord# e1 e2 ̇ eqWord# e1 e
′

2 if e2 ̈ e′2

FORCEDEEP e ̈ e′ if e ̇ e′

FORCEDEEPARG e1 e2 ̈ e1 e
′

2 if e2 ̈ e′2

Figure 9. Rules for Primitives

form even though the code for these memoizations are identical
to each other.

As a consequence of this, it is relatively easy to get code that is
exponentially large in the size of the types being traversed because
the inlining process may not terminate until every path down the
expanded expression contains a memoization for every type being
traversed. Even in cases when the code does not blow up to be
exponentially large, these duplicated memoizations represent extra
work for the optimizer and inflate the size of the resulting code.

To avoid this size explosion, we let-float memoized bindings
as far outward as possible. By floating the memoized bindings out-
wards, we maximize their scope and thus avoid creating duplicate
memoizations due to already created memoizations being out of
scope. For example, once the memoization created for the identifier
in a λ-expression floats outwards, the traversal for the identifier in
a let expression can use the existing memoization instead of cre-
ating a new one. We also consolidate memoization bindings into a
common recursive let binding when possible as, while they may
not initially refer to each other, the process of replacing expressions
with their memoized bindings may make them refer to each other
at some later point.

5. Implementation

We implemented the custom optimization pass described in Section
4 using HERMIT, a recently developed GHC plugin for applying
transformations to Core (Farmer et al. 2012; Sculthorpe et al.
2013a). HERMIT was used interactively to gain an intuition about
the transformations necessary, and was then extended with new
primitive transformations implementing the rules given in Section
4. The overall optimization algorithm is expressed as a HERMIT
script that performs Algorithm 1 and then uses HERMIT’s bash
command to simplify the code and eliminate things like dead let
bindings that are left behind by Algorithm 1.

HERMIT provides several facilities to ease the implementation
of Core-to-Core transformations such as our optimization. This
includes KURE, a strategic rewriting library allowing transforma-
tions to be expressed in a high-level, declarative style (Gill 2009;
Farmer et al. 2012; Sculthorpe et al. 2013b), a versioning kernel
which manages the application of rewrites, congruence combina-
tors for Core which automatically update the rewriting context, er-
ror reporting facilities, and a large set of existing primitive rewrites
and queries. Not including primitive transformations already avail-
able in HERMIT, the entire optimization was implemented in ap-
proximately 400 lines of Haskell and did not require any modifica-
tions to GHC itself.

5.1 Benchmarks

We applied the optimization to a selection of benchmarks taken
from the Haskell generic-programming literature. The resulting

programs were benchmarked using a version of the framework
from Magalhães et al. (2010) that was adapted to support compi-
lation with HERMIT. The benchmarks were as follows.

RmWeights Taken from GPBench (Rodriguez et al. 2008), the
RmWeights benchmark traverses a weighted binary tree while
removing the weight annotations. It is implemented in SYB
using the everywhere and mkT combinators.

SelectInt Also from GPBench, SelectInt traverses a weighted
binary tree while collecting all the Ints into a single list. It is
naively implemented in SYB using the everything and mkQ
combinators, but as we discuss in Section 5.2, it had to be
modified to ensure a fair comparison.

Map Found in Magalhães et al. (2010), Map performs a mapping
over a structure. It is implemented in SYB using everywhere
and mkT. This traversal is performed on three data types. The
first is a binary tree of integers. The second is a logic formula.
The third is an AST type from the haskell-src module in-
volving over 30 types and 100 different constructors. For the bi-
nary tree, all integers are incremented. For the other two types,
all characters are replaced with the character ‘y’.

RenumberInt Taken from Adams and DuBuisson (2012), the
RenumberInt benchmark replaces each integer in a struc-
ture with a new, unique integer that is drawn from a state
monad. This traversal is also performed on both binary tree
and logic formula data types. It is implemented in SYB using
everywhereM and mkM.

5.2 Benchmark setup

Each benchmark was implemented both non-generically (Hand)
and using SYB combinators (SYB). The SYB implementation was
also benchmarked with our optimization (SYBOPT). The bench-
marking framework used in Magalhães et al. (2010) was used to
run each program 10 times and take the average running time. We
compiled the benchmarks with GHC HEAD1 using the -O2 com-
piler option and ran them with the -K1g RTS option on a 2.3 GHz,
64-bit Intel i5 with 4 GB of RAM running Darwin 11.4.2.

The implementation of SelectInt in GPBench uses two dif-
ferent algorithms for the Hand and SYB implementations. The
Hand implementation uses a linear-time, accumulating-style traver-
sal, while the SYB implementation uses a quadratic-time, non-
accumulating traversal. To ensure a fair comparison, we modified
the SYB implementation to use an accumulating traversal.

1 A space leak in GHC was discovered during the course of this work. A
patch for this that makes it possible to run the HERMIT transformations
involved in this optimization was merged into GHC HEAD on June 4, 2013.

8

MapSrcMapTree RenumberIntLogicRenumberIntTreeRmWeights SelectInt MapLogic
10−1

100

101

102

E
x
ec

u
ti

o
n

ti
m

e
(n

o
rm

al
iz

ed
)

Hand SYBOPT SYB

Figure 10. Benchmarks Results

5.3 Performance results

Figure 10 summarizes the resulting execution times of the bench-
marks. The results are normalized relative to the Hand version and
are displayed on a logarithmic scale in order to accommodate the
large differences between execution times. These benchmarks con-
firm previous results about the poor performance of SYB as it per-
formed on average an order of magnitude slower than the handwrit-
ten code.

For all of the benchmarks except RenumberIntLogic, the opti-
mization completely eliminates the runtime costs associated with
SYB. When initially running these benchmarks, the SYBOPT ver-
sions of MapTree and MapLogic actually ran faster than the Hand
versions by about 20%. Analysis of the resulting Core revealed
that, as a side effect of our optimization, the traversal was being
specialized to the particular function being mapped over the struc-
ture. The Hand version did not do this. Rewriting the Hand ver-
sion by applying a static-argument transformation (Santos 1995)
improved its performance to match that of the SYBOPT version.

For RenumberIntLogic, the SYBOPT version is 2.2 times
slower than the Hand version. An examination of the generated
Core leads us to believe that this is due to GHC not optimizing the
monadic operations in the SYBOPT version as well as it does in
the Hand version.

For all of the benchmarks, a manual inspection of the generated
Core confirms that the optimization does indeed eliminate all run-
time type checks and dictionary dispatches in the SYB-style code
and that the resulting code is equivalent to the handwritten code.

6. Limitations and Future Work

While the algorithm described in Section 4 is effective for most in-
stances of SYB-style code, it does have limitations and areas that
future work can improve. Many of these problems will be familiar
to the partial-evaluation community. As these are active research
topics in their own right, we do not attempt a general solution to
them but where possible note how they can be mitigated for our
particular optimization. As it is domain-specific, this optimization
may not be appropriate for all code, and the compiler may require
assistance from the programmer in the form of pragmas or annota-
tions to determine when to use or not use this optimization.

6.1 Missing inlining information

The first and most obvious limitation is that this optimization relies
heavily on inlining and thus depends on having the appropriate
inlining information available. If that information is not available,
then the optimization may fail to complete its task of eliminating
expressions with undesirable types. Fortunately, this is an easily
detected situation, and the optimization can abort while leaving
the original code intact and issuing a warning so the user can
make appropriate adjustments to expose the necessary inlining
information.

Missing inlining information can be caused by using functions
from imported modules for which GHC has not recorded inlining
information. It may also be caused by running the optimization
over code in which the types over which Data or Typeable are
quantified are underspecified. For example, consider the following
code that someone might write as a helper function.

mapSYB :: (Data a) => (a -> a) -> [a] -> [a]
mapSYB f = everywhere (mkT f)

Since this function is polymorphic in a, there is no concrete dictio-
nary available for the class constraint Data a, and we cannot fully
optimize this function.

There are, however, two important points to consider about
this limitation. First, as it is obviously impossible to specialize a
generic traversal when we do not yet know the type at which to
specialize, this limitation is inherent in the optimization task and
not merely a failure of the optimization algorithm. For example, if
a is instantiated with [Char], then f must be applied not only to
the elements of the list passed to mapSYB but also to the sub-lists
of those elements. Until we know a, it is impossible to know how
to traverse those elements.

Second and more importantly, this limitation is not a problem
in practice. It simply means that the optimization must be deferred
to uses of the function that specify types at which to specialize.
For example, instead of optimizing mapSYB, we optimize uses of
mapSYB such as the following.

incrementSYB/Int :: [Int] -> [Int]
incrementSYB/Int = mapSYB inc

9

Because this definition completely determines the type of a in
mapSYB and thus calls mapSYB with a concrete Typeable dic-
tionary for a, the optimization will successfully complete on
incrementSYB/Int even though it would fail on mapSYB.

Finally, note that specialized versions of mapSYB can be explic-
itly generated by specifying their types as in the following.

mapSYB/Int :: (Int -> Int) -> [Int] -> [Int]
mapSYB/Int = mapSYB

6.2 Essential occurrences of undesirable types

Since the primary design heuristic behind this optimization is the
elimination of expressions that have undesirable types, it will fail
if there are expressions that should not be eliminated. An obvious
example is when the type being traversed itself contains undesirable
types such as TypeRep or TyCon, but less obvious examples of this
include types like the following.

data Spine b
= Unit b
| ∀a. (Data a) =>

App (Spine (a -> b)) a

Here the existential2 type a is qualified by the Data class and thus
the App constructor contains a dictionary for the Data class.

Along similar lines, it may be possible for a particular traversal
to contain essential uses of undesirable types. For example, SYB
allows code to arbitrarily synthesize TypeRep and TyCon objects.
This may result in occurrences of undesirable types that are essen-
tial to the traversal and either should not or cannot be eliminated.
Note that though such a traversal is possible, it is exceedingly rare
in SYB-style code. None of the standard traversals exhibit such a
structure.

This limitation may be mitigated by annotating the code with
information about which occurrences of undesirable types are gen-
uinely undesirable and which are not. Then as the optimization
transforms the code, we can keep careful account of each occur-
rence and whether it is genuinely undesirable.

6.3 Polymorphic recursion in types

As with other forms of partial evaluation, polymorphic recursion is
a concern with this optimization. Most types in Haskell programs
are regular, but non-regular, polymorphically recursive types do oc-
casionally occur. Consider, for example, the following polymorphi-
cally recursive, non-regular type.

data T a
= Base a
| Double (T (a, a))

If we attempt to traverse over the type T Int, then the traversal will
initially be memoized at T Int. Since at this type the argument to
the Double constructor is of type T (Int, Int), the traversal will
also have to be memoized at type T (Int, Int). In turn, at that
type the argument to the Double constructor has type T ((Int,
Int), (Int, Int)), and so on. Naively running the optimiza-
tion on this type would thus continue forever as the memoization
process depends on the assumption that there are a finite number
of types to be traversed, but the T Int type effectively contains an
infinite number of types.

In order to successfully handle this, we would need to account
for the fact that in many cases a non-generic traversal over a poly-
morphic type must be structured differently from a generic traver-
sal. In these cases it is impossible to generate non-generic code

2 GHC uses the ∀ keyword for both existential and universal types. The
distinction between the two is where the keyword is placed.

that naively mirrors the structure of the generic code. For example,
consider a traversal that increments all values of type Int inside an
object of type T Int. The generic code for this is the following.

incrementT :: T Int -> T Int
incrementT x = everywhere (mkT inc) x

Now consider how one would write this with non-generic code.
The recursion over the elements of T cannot have type T Int ->
T Int since the Double constructor changes the type argument
of T. On the other hand the recursion cannot have type ∀a. T a
-> T a since being polymorphic in a prevents the function from
manipulating the Int that occur in a. Instead, a more sophisticated
implementation such as the following is necessary.

incrementT :: T Int -> T Int
incrementT x = go inc x where

go :: (a -> a) -> T a -> T a
go f (Base x) = f x
go f (Double t) = Double (go (f’ f) t)
f’ :: (a -> a) -> (a, a) -> (a, a)
f’ f (x1, x2) = (f x1, f x2)

Since the optimization presented in this paper preserves the struc-
ture of the generic traversal and incrementT does not follow that
structure, it is unsurprising that our optimization fails on such a
traversal. However, note that the f argument to go serves essen-
tially the same role as the Data dictionary in the generic traversal
in that it provides the necessary information for implementing the
parts of the traversal that operate over the type a. Thus an interest-
ing direction for future work would be deriving such a non-generic
implementation from the generic traversal by appropriately special-
izing and simplifying the Data dictionary.

6.4 Polymorphic recursion in terms

In addition to types being polymorphically recursive, the traversal
itself may be polymorphically recursive in an argument whose type
contains undesirable types. Traversals like this are rare in SYB-
style code, but one could imagine an example like the following.

poly :: (∀b. Data b => b -> b)
-> (∀a. Data a => a -> a)

poly f x = f (gmapT (poly (f ‘extT‘ g)) x)
where g = ...

Note how the f argument to the traversal is extended each time
through the traversal. As a result, the previously memoized in-
stances of poly cannot be used and the optimization algorithm will
never be able to completely eliminate all expressions with undesir-
able types.

Of course, this is a concern only because the type of f contains
an undesirable type. Parameters such as x that do not have a type
containing an undesirable type can freely vary from call to call as
the memoization does not care about them.

6.5 Selective traversal

An instance where the optimization does not fail but the results
could be improved is when parts of the generic traversal expand to
trivial traversals that do no useful work. For example, a traversal
that modifies only integers can safely skip over any strings that it
finds and avoid processing the individual characters in the string.
Adams and DuBuisson (2012) call this selective traversal and doc-
ument the significant performance improvements this can achieve.
SYB does not do selective traversal unless it is explicitly told what
expressions to skip. In the code produced by our optimization, these
skippable parts of the traversal are manifest as functions that do a

10

trivial deconstruction and reconstruction. For example, in a traver-
sal that effects only integers, we might find code for traversing
strings similar to the following.

memoChar c = c
memoString [] = []

memoString (c : cs) = memoChar c : memoString cs

Here memoString is equivalent to the identity function and can

thus be more efficiently implemented by not doing the traversal
and simply returning its argument. Depending on the structure of
the data being traversed, this can lead to significant speedups.

Similar situations arise for queries and monadic traversals. For
queries, some parts of the traversal may produce trivial query re-
sults, and for monadic traversals, some parts of the traversal may be
equivalent to simply applying return to the tree being traversed.

Identifying and optimizing these trivial functions is fairly easy
and can be done by a post-processing pass after our optimization.
We plan to add this in future versions of our implementation.

7. Related work

Generic-programming systems in Haskell are often slow relative to
handwritten code. There has been a significant amount of work on
designing more efficient generic-programming systems (Mitchell
and Runciman 2007; Brown and Sampson 2009; Chakravarty et al.
2009; Augustsson 2011; Adams and DuBuisson 2012), but there is
little work on optimizing a pre-existing generic-programming sys-
tem as we do here. Magalhães (2013) shows how to optimize the
generic-deriving system by using standard compiler optimiza-
tions, but notes that his techniques are not sufficient to optimize
SYB-style code. Alimarine and Smetsers (2004) have developed a
similar optimization system for generics in the Clean language.

In a broad sense, our optimization is a form of partial evaluation
(Jones et al. 1993) with a binding-time analysis that uses type in-
formation to determine whether code should be statically computed
at compile time or dynamically evaluated at runtime. However, be-
cause we use domain specific knowledge, our algorithm can be sim-
pler and more direct than traditional partial evaluation. This idea
is also related to the partial evaluation of class dictionaries (Jones
1995), and can be seen as a form of call-pattern specialization (Pey-
ton Jones 2007). However, our optimization specializes and mem-
oizes over any expression with an undesirable type whereas Jones
(1995) specializes over only class dictionaries, and Peyton Jones
(2007) specializes over only manifest constructors.

Finally, our optimization can be seen as a limited form of super-
compilation (Turchin 1979). Like Bolingbroke and Peyton Jones
(2010), we implement a memoization scheme to ensure terms are
optimized only once, but we can more easily direct the optimization
as we restrict ourselves to optimizing SYB-style code. In theory,
we face the same problem of code explosion that supercompilers
do (Jonsson and Nordlander 2011), but as we operate in the more
limited setting of SYB-style code, this problem is easier to handle.

8. Conclusion

SYB is widely used in the Haskell community. Its poor perfor-
mance, however, can be a serious drawback in practical systems.
Nevertheless, by using domain specific knowledge about SYB-
style code, we can design an optimization that transforms this code
to be as fast as equivalent handwritten, non-generic code.

The essential task of this optimization is the elimination of cer-
tain types by a compile-time symbolic evaluation of the appropri-
ate parts of the code. We have implemented this optimization in
the HERMIT plugin for GHC. The interactive manipulation that
HERMIT supports made it easy to rapidly prototype such an op-
timization and trace how it transforms the code. This interactive

approach was instrumental in empirically discovering the appropri-
ate optimization steps for optimizing SYB-style code. For example,
a number of auxiliary code simplifications had to be introduced in
order to make it possible for the core rules to run. In the future,
we hope to explore how to integrate this optimization directly into
GHC, and how to make it applicable to other domains where ex-
pressions of certain types need to be eliminated.

Benchmarks show that this optimization significantly improves
the performance of several typical SYB-style traversals to closely
match that of handwritten, non-generic code. In so doing, this
optimization changes SYB from being one of the slowest generic-
programming systems in the Haskell community to being one of
the fastest.

Acknowledgments

The work presented in this paper was supported in part by the
National Science Foundation (NSF) grants CCF-1218605 and
1117569, the Rockwell Collins contract 4504813093, and the En-
gineering and Physical Sciences Research Council (EPSRC) grant
EP/J010995/1.

References

Michael D. Adams and Thomas M. DuBuisson. Template your boilerplate:
using Template Haskell for efficient generic programming. In Proceed-

ings of the 2012 symposium on Haskell symposium, Haskell ’12, pages
13–24, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1574-6.
doi: 10.1145/2364506.2364509.

Artem Alimarine and Sjaak Smetsers. Optimizing generic functions. In
Dexter Kozen, editor, Mathematics of Program Construction, volume
3125 of Lecture Notes in Computer Science, pages 16–31. Springer
Berlin Heidelberg, 2004. ISBN 978-3-540-22380-1. doi: 10.1007/
978-3-540-27764-4_3.

Lennart Augustsson. Geniplate version 0.6.0.0, November 2011. URL
http://hackage.haskell.org/package/geniplate/.

Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by
evaluation. In Proceedings of the third ACM Haskell symposium on

Haskell, Haskell ’10, pages 135–146, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0252-4. doi: 10.1145/1863523.1863540.

Neil C. C. Brown and Adam T. Sampson. Alloy: fast generic transforma-
tions for Haskell. In Proceedings of the 2nd ACM SIGPLAN symposium

on Haskell, Haskell ’09, pages 105–116, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-508-6. doi: 10.1145/1596638.1596652.

Manuel M. T. Chakravarty, Gabriel C. Ditu, and Roman Leshchinskiy.
Instant generics: Fast and easy. Available at http://www.cse.unsw.
edu.au/~chak/papers/instant-generics.pdf, 2009.

Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe. The HERMIT
in the machine: A plugin for the interactive transformation of GHC core
language programs. In 2012 ACM SIGPLAN Haskell Symposium, pages
1–12, New York, 2012. ACM.

GHC Team. The Glorious Glasgow Haskell Compilation System User’s

Guide, Version 7.6.2, 2013. URL http://www.haskell.org/ghc.

Andy Gill. A Haskell hosted DSL for writing transformation systems.
In Walid Mohamed Taha, editor, Domain-Specific Languages, volume
5658 of Lecture Notes in Computer Science, pages 285–309. Springer
Berlin Heidelberg, 2009. ISBN 978-3-642-03033-8. doi: 10.1007/
978-3-642-03034-5_14.

Industrial Haskell Group. Hackage: Total downloads, 2013. URL http:
//hackage.haskell.org/packages/top. Accessed on October 8,
2013.

Mark P. Jones. Dictionary-free overloading by partial evaluation. LISP

and Symbolic Computation, 8(3):229–248, September 1995. ISSN 0892-
4635 (Print) 1573-0557 (Online). doi: 10.1007/BF01019005.

Neil D. Jones, Casrten K. Gomard, and Peter Sestof. Partial Evaluation

and Automatic Program Generation. Prentice-Hall International Series
in Computer Science. Prentice Hall, 1993. ISBN 978-0-13-020249-9.

11

http://hackage.haskell.org/package/geniplate/
http://www.cse.unsw.edu.au/~chak/papers/instant-generics.pdf
http://www.cse.unsw.edu.au/~chak/papers/instant-generics.pdf
http://www.haskell.org/ghc
http://hackage.haskell.org/packages/top
http://hackage.haskell.org/packages/top

Peter A. Jonsson and Johan Nordlander. Taming code explosion in su-
percompilation. In Proceedings of the 20th ACM SIGPLAN workshop

on Partial evaluation and program manipulation, PEPM ’11, pages 33–
42, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0485-6. doi:
10.1145/1929501.1929507.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In Proceedings of the 2003

ACM SIGPLAN international workshop on Types in languages design

and implementation, TLDI ’03, pages 26–37, New York, NY, USA,
2003. ACM. ISBN 1-58113-649-8. doi: 10.1145/604174.604179.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proceedings of the ninth ACM SIGPLAN

international conference on Functional programming, ICFP ’04, pages
244–255, New York, NY, USA, 2004. ACM. ISBN 1-58113-905-5. doi:
10.1145/1016850.1016883.

José Pedro Magalhães. Optimisation of generic programs through inlining.
In Implementation and Application of Functional Languages, 2013.

José Pedro Magalhães, Stefan Holdermans, Johan Jeuring, and Andres Löh.
Optimizing generics is easy! In Proceedings of the 2010 ACM SIGPLAN

workshop on Partial evaluation and program manipulation, PEPM ’10,
pages 33–42, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
727-1. doi: 10.1145/1706356.1706366.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing.
In Proceedings of the ACM SIGPLAN workshop on Haskell workshop,
Haskell ’07, pages 49–60, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-674-5. doi: 10.1145/1291201.1291208.

Simon Peyton Jones. Call-pattern specialisation for Haskell programs. In
Proceedings of the 12th ACM SIGPLAN international conference on

Functional programming, ICFP ’07, pages 327–337, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-815-2. doi: 10.1145/1291151.
1291200.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell
Compiler inliner. Journal of Functional Programming, 12(4–5):393–
434, July 2002. ISSN 1469-7653. doi: 10.1017/S0956796802004331.

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kise-
lyov, and Bruno C. d. S. Oliveira. Comparing libraries for generic pro-
gramming in Haskell. Technical Report UU-CS-2008-010, Utrecht Uni-
versity, 2008.

Alexey Rodriguez Yakushev. Towards Getting Generic Programming

Ready for Prime Time. PhD thesis, Utrecht University, 2009.

André Santos. Compilation by Transformation in Non-Strict Functional

Languages. PhD thesis, University of Glasgow, 1995.

Neil Sculthorpe, Andrew Farmer, and Andy Gill. The HERMIT in the tree:
Mechanizing program transformations in the GHC core language. In
Implementation and Application of Functional Languages, 2013a.

Neil Sculthorpe, Nicolas Frisby, and Andy Gill. KURE: A Haskell-
embedded strategic programming language with custom closed uni-
verses. Under consideration for publication in J. Functional Program-
ming, 2013b.

V[alentin] F[yodorovich] Turchin. A supercompiler system based on the
language REFAL. ACM SIGPLAN Notices, 14(2):46–54, February 1979.
ISSN 0362-1340. doi: 10.1145/954063.954069.

Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães.
Equality proofs and deferred type errors: a compiler pearl. In Proceed-

ings of the 17th ACM SIGPLAN international conference on Functional

programming, ICFP ’12, pages 341–352, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1054-3. doi: 10.1145/2364527.2364554.

12

	Introduction
	Overview of SYB
	Transformations
	Traversals
	Mapping subterms
	Why SYB is slow

	Optimizing SYB-style code
	A more principled attempt
	Elimination of expressions with undesirable types
	Memoization
	Simplification
	Cast elimination
	Let elimination

	Primitives
	Optional optimizations
	Case reduction
	Memoization floating

	Implementation
	Benchmarks
	Benchmark setup
	Performance results

	Limitations and Future Work
	Missing inlining information
	Essential occurrences of undesirable types
	Polymorphic recursion in types
	Polymorphic recursion in terms
	Selective traversal

	Related work
	Conclusion
	References

