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Abstract
Generic programming allows the concise expression of algorithms
that would otherwise require large amounts of handwritten code. A
number of such systems have been developed over the years, but a
common drawback of these systems is poor runtime performance
relative to handwritten, non-generic code. Generic-programming
systems vary significantly in this regard, but few consistently match
the performance of handwritten code. This poses a dilemma for de-
velopers. Generic-programming systems offer concision but cost
performance. Handwritten code offers performance but costs con-
cision.

This paper explores the use of Template Haskell to achieve
the best of both worlds. It presents a generic-programming sys-
tem for Haskell that provides both the concision of other generic-
programming systems and the efficiency of handwritten code. Our
system gives the programmer a high-level, generic-programming
interface, but uses Template Haskell to generate efficient, non-
generic code that outperforms existing generic-programming sys-
tems for Haskell.

This paper presents the results of benchmarking our sys-
tem against both handwritten code and several other generic-
programming systems. In these benchmarks, our system matches
the performance of handwritten code while other systems average
anywhere from two to twenty times slower.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.2 [Program-
ming Techniques]: Automatic Programming

General Terms Algorithms, Design, Languages, Performance.

Keywords Generic programming, Scrap your Boilerplate, Tem-
plate Haskell

1. Introduction
Generic programming provides a concise way to express many al-
gorithms. In particular, many data-structure transformations and
queries can be expressed without manually writing the uninter-
esting parts of data-structure traversal. For example, consider the
task of collecting every variable in an abstract syntax tree (AST).
Many sub-terms of various types must be traversed even though we
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are interested in only the parts dealing with variables. Other parts
of the traversal follow a predictable pattern and are “boilerplate
code” [Lämmel and Peyton Jones 2003]. Generic programming al-
low the programmer to focus on the interesting parts of the code
and leave the boilerplate to the generic-programming system. This
frees the developer from the drudgery of writing boilerplate code
and makes it possible to concisely express these traversals.

Many generic-programming systems have focused on theoret-
ically elegant constructions and increasing expressivity, but per-
formance should also be a consideration lest the resulting sys-
tem be too slow for practical use. Unfortunately, among generic-
programming systems poor performance is a common problem.

We faced this performance problem when implementing the
compiler for the Habit language [HASP Project 2010]. When
choosing a generic-programming system, our goals were com-
pletely pragmatic: the system needed to perform well and be easy
to use. Using generic programming made it easy to factor the Habit
compiler into smaller passes. As a result, the code became easier to
manage and debug. Each new pass, however, incurs overhead as the
AST is traversed multiple times. Thus, any overhead introduced by
a generic-programming system is paid multiple times and should
be minimized. Ideally, passes written using generic programming
should be just as fast as handwritten passes. This made existing
generic-programming systems ill-suited to our needs.

We turned to Template Haskell [Sheard and Peyton Jones 2002]
to solve these performance problems, and this paper documents
the results of that work. Sheard and Peyton Jones allude to the
possibility of using Template Haskell for generic programming,
but working directly with Template Haskell can be a daunting
task. The primitives introduced in this paper greatly simplify this
by abstracting the user from the more complex parts of Template
Haskell and thus allow the user to write traversals in a high-level
style on par with other generic-programming systems.

In particular, we show that, with appropriate library primitives,
generic programming in Template Haskell can be as concise as in
other generic-programming systems while maintaining the perfor-
mance of handwritten code. We have implemented these primitives
in the Template Your Boilerplate (TYB) library, which is available
at http://hackage.haskell.org/package/TYB.

Section 2 of this paper is a short review of the essentials of
Template Haskell. Section 3 demonstrates the ease of use of TYB.
Section 4 details how TYB is implemented. Section 5 demonstrates
the performance of TYB. Section 6 reviews related work. Section 7
concludes.

In this paper we use Scrap Your Boilerplate (SYB) as a refer-
ence point when explaining some concepts. Basic knowledge of
SYB will be helpful to the reader but is not necessary. We do not
assume any prior knowledge of Template Haskell.

http://hackage.haskell.org/package/TYB


2. A Crash Course in Template Haskell
We now review the essential ideas of Template Haskell used in this
paper. Readers already familiar with Template Haskell can safely
skip this section.

Template Haskell is a metaprogramming system for Haskell and
has been integrated as a standard part of GHC since version 6.0.
As a metaprogramming system, Template Haskell allows parts of
programs to be pragmatically generated at compile time instead of
being directly written by the programmer. It consists of a library
for representing the ASTs of Haskell code fragments as well as
syntactic constructs for quotes and splices. This section describes
these and shows examples of their use.

The AST types include identifiers (Name), expressions (Exp),
and types (Type). In addition, Template Haskell includes a monadic
type (Q) that acts as an interface between the compiler and the
Template Haskell code that executes at compile time. It is used to
query the environment as well as to generate fresh identifiers.

Template Haskell includes several quotation constructs as a
convenience for defining AST objects. They act as literals and
have values that are the AST of the Haskell code fragment written
inside them. They make it easier to construct ASTs by avoiding
the need to directly reference low-level AST constructors. There
are multiple types of quotations but only the ones for Name (’·),
Exp (J·K), and Type (Jt·K) are used in this paper.

An example of these is ’map which returns the fully quali-
fied Name of the map function. Likewise, J λx → 1 + x K returns
a Q Exp that represents the AST of the expression λx → 1 + x. Fi-
nally, Jt ∀ a. Int → a → Int K returns a Q Type that represents
the AST for the type ∀ a. Int → a → Int. The Q monad in the re-
turn values of these quotations is used to generate fresh variable
names for x and a.

The final syntactic construct is the splice. It is written $(e) and
can appear anywhere either an expression or a type is expected. If
a splice occurs where an expression is expected, then e must be of
type Q Exp. If it occurs where a type is expected, then e must be
of type Q Type. In either case, the AST fragment returned by e is
inserted where the splice occurs.

If the splice is inside a surrounding quotation, then the AST
returned by the quotation will contain the AST returned by e at the
position of the splice. For example, the following defines mkInc to
be a function that generates an AST for an increment function with
an increment based on the value of exp.

mkInc :: Q Exp → Q Exp
mkInc exp = Jλx → x + $(exp)K

If a splice is not inside a quotation, then it is a top-level splice,
and e is executed at compile time instead of runtime. The compiler
uses the AST returned by e in place of the splice. For example,
one could use the mkInc function and a hypothetical randomInt
function to randomly choose1 an increment at compile time:

main = print (inc 3) >> print (inc 42) where
inc = $(mkInc randomInt)

If randomInt returns an AST fragment for the literal 17 during
compilation, then this code compiles as if inc is λx → x + 17.

The relationship between quotes and splices in Template Haskell
is similar to the relationship between quasiquote and unquote
in Scheme and Lisp [Bawden 1999] in that splices cancel out a
surrounding quote. They differ in that top-level splices, do not have
a surrounding quote and delimit parts of the program that are gen-
erated at compile time.

1 Non-determinisitic functions, such as randomInt, are possible due to the
IO monad embedded in the Q monad used by Template Haskell.

3. TYB Examples
As an example of using TYB, consider the task of manipulating a
real-world AST. For example, the AST from Language.Haskell.
Syntax includes not just expressions but also declarations, state-
ments, patterns and many other forms.

Suppose we wish to prefix every identifier (HsName) in a mod-
ule (HsModule) with an underscore. In traversing an HsModule,
over 30 different types with over 100 constructors are potentially
involved. Given the number of types and constructors, few pro-
grammers would look forward to implementing such a thing by
hand. Generic-programming systems like SYB make this easy. For
example, in SYB, the everywhere function traverses a value of
arbitrary type and applies a supplied transformation to every sub-
term. Thus, we can write:

prefixNamessyb x = everywhere (mkT f) x where
f :: HsName → HsName
f name = prefixName "_" name

Since the transformation passed to everywhere is applied to
multiple different types, we use mkT as an adapter to generalize
f from a transformation on HsName to a transformation on any
type.2 When applied to a value that is an HsName, mkT f is just
the function f, but on other types it is the identity function.

TYB draws inspiration from SYB and exposes a similar inter-
face. SYB performs the type dispatch needed by generic program-
ming at runtime. TYB achieves the convience of SYB while hav-
ing the runtime performance of handwritten code by moving this
type dispatch to compile time. It does this using Template Haskell
splices that generate traversals customized to the particular types
that they traverse. At an intuitive level, one could consider the code
generated by TYB as the result of partially evaluating or inlining
SYB.

Most programs written with SYB require only minor modifi-
cation to use TYB. In TYB, the equivalent of prefixNamessyb is
written:

prefixNames x =
$(everywhere (mkT ’f) Jt HsModule K) x where

f :: HsName → HsName
f name = prefixName "_" name

Here, everywhere is inside a splice and thus executes at com-
pile time. It generates a Haskell code fragment for traversing an
HsModule and the compiler compiles that fragment in place of the
splice. The types for everywhere and TYB’s other core functions
are shown in Figures 2 and 3

Aside from the additional syntax needed by Template Haskell,
the everywhere function in TYB takes an extra argument that is
not in the SYB version. It specifies the type that everywhere tra-
verses. In this case, the argument is Jt HsModule K so the traversal
is over an HsModule and any values inside an HsModule regard-
less of their types. Systems like SYB can use the type expected by
the surrounding code to determine the type over which to traverse.
But due to limitations imposed by Template Haskell, code inside a
splice does not know the type expected outside the splice. Thus, in
TYB we have to explicitly specify the type over which to traverse.

For this small increase in code complexity, the performance im-
provements are dramatic. As shown in Section 5, the SYB version
takes ten times longer than a handwritten traversal, but the TYB
version matches the speed of a handwritten traversal.

TYB also defines both a monadic traversal (everywhereM) and
a query traversal (everything). These parallel their counterparts

2 Technically the transformation is only over instances of the Typeable
class, but for the purposes of this paper, this is a minor point.
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Figure 1: Runtime relative to handwritten code (geometric mean).

in SYB. For example, consider the task of freshening all of the iden-
tifiers in an HsModule. Suppose we have a function freshenName
that has type HsName → Fresh HsName for some monad Fresh.
With SYB, to apply freshenName to every identifier, we write:

freshenNamessyb x = everywhereM (mkM freshenName) x

With TYB, this is equally easy. The main differences are the use
of Template Haskell syntax and the need to pass the argument to
everywhereM that specifies the type over which freshenNames
traverses. It is thus written:

freshenNames x =
$(everywhereM (mkM ’freshenName) Jt HsModule K) x

As a final example, consider a query traversal that lists all
HsNames contained in an HsModule. With SYB this is written:

listNamessyb x = everything (++) (mkQ [] f) x where
f :: HsName → [HsName]
f x = [x]

Again, using TYB for this query requires only minor modifica-
tions relative to the SYB version and is written:

listNames x = $(everything J(++)K (mkQ J[]K ’f)
Jt HsModule K) x where

f :: HsName → [HsName]
f x = [x]

In both freshenNames and listNames, mkM and mkQ serve the
same role as mkT does in prefixNames, but for monadic transfor-
mations and queries respectively.

With query traversals, however, we have a few extra arguments.
The (++) passed to everything specifies how to combine query
results from multiple sub-terms. The [] passed to mkQ specifies the
result for a sub-term that is not an HsName.

The TYB versions of these traversals perform the same calcu-
lations as the SYB versions, but the TYB versions complete their
calculations over ten times faster.

Most of the operators provided by TYB follow this same pat-
tern. A traversal written with SYB can easily be converted to TYB
by the addition of splices around generic operators, and minor mod-
ifications to their arguments.

TYB offers a simple interface to generic programming that
eliminates the need for handwritten boilerplate code. But unlike

Primitives
constructorsOf :: Type → Q (Maybe [(Name, [Type])])
typeOfName :: Name → Q Type
expandType :: Type → Q Type

Value deconstruction

thfoldl :: ( Q Exp {- c (d → b) -}
→ Type {- d -} → Q Exp {- d -}
→ Q Exp {- c b -} )

→ (Q Exp {- g -} → Q Exp {- c g -} )
→ Q Type {- a -} → Q Exp {- a → c a -}

thcase :: (Q Exp {- a → b → . . . → t -}
→ [(Type, Q Exp)] {- a, b, . . . -}
→ Q Exp {- c t -} )

→ Q Type {- t -} → Q Exp {- t → c t -}

One-layer traversal

thmapT :: (Type {- b -} → Q Exp {- b → b -} )
→ Q Type {- a -} → Q Exp {- a → a -}

thmapM :: (Type {- b -} → Q Exp {- b → m b -} )
→ Q Type {- a -} → Q Exp {- a → m a -}

thmapQ :: (Type {- b -} → Q Exp {- b → r -} )
→ Q Type {- a -} → Q Exp {- a → [r] -}

Figure 2: Core functions provided by TYB (part 1).

most other generic-programming systems, it is just as fast as hand-
written code. In Section 5, we benchmark TYB against both hand-
written code and several other generic-programming systems. Fig-
ure 1 summarizes the results and shows the average performance of
each system relative to handwritten code. TYB often outperforms
other systems by an order of magnitude or more. The only other
system that comes close is Geniplate [Augustsson 2011], which
uses many of the same techniques as TYB but has a more restric-
tive interface, as we discuss later in Section 6.2.

4. Implementation
The technique that makes TYB execute efficiently is that it elabo-
rates generic operations at compile time and, in the process, gen-
erates code specialized to particular types. This specialized code
contains no generic parts and thus executes efficiently at runtime.

We use the splice form ($(e)) from Template Haskell for this
compile-time code generation. In the prefixNames example from
Section 3, the call to everywhere is executed at compile time since
it is inside a splice. Thus, everywhere does not itself traverse a
value of type HsModule. Rather, it generates a Template Haskell
Exp for code that, when executed at runtime, will traverse a value
of type HsModule.

The core functions provided by TYB are listed in Figures 2
and 3. Several of them closely parallel the corresponding functions
from SYB, which are shown in Figure 4 for reference. The compile
time versus runtime split does change the types of these functions,
however. With SYB, the functions manipulate values, but with TYB
the functions manipulate AST fragments. In Figures 2 and 3, the
signatures are annotated with comments denoting the type for each
AST fragment. For Exp, this is the type of the expression. For
Type, this is the value of the type. For Name, this is the type of
the value bound to that identifier. For example, the first argument
to everywhere has type Type → Q Exp, and given the Type that
is the AST representation of a particular type b, the returned AST
fragment should represent a function that expects a value of type b
and returns a transformed value of type b.



Recursive traversal
everywhere :: (Type {- b -} → Q Exp {- b → b -} )

→ Q Type {- a -} → Q Exp {- a → a -}
everywhereFor :: Name {- b → b -}

→ Q Type {- a -} → Q Exp {- a → a -}
everywhereBut :: ( Type {- a -} → Q Bool)

→ ( Type {- a -} → Q Exp {- a → a -} )
→ Q Type {- a -} → Q Exp {- a → a -}

everywhereM :: (Type {- b -} → Q Exp {- b → m b -} )
→ Q Type {- a -} → Q Exp {- a → m a -}

everything :: Q Exp {- r → r → r -}
→ ( Type {- b -} → Q Exp {- b → r -} )
→ Q Type {- a -} → Q Exp {- a → r -}

inType :: Type → Type → Q Bool
memoizeExp ::

((Type → Q Exp) → Type → Q Exp) → Type → Q Exp

Dispatch

mkT :: Name {- b → b -}
→ Type {- a -} → Q Exp {- a → a -}

mkM :: Name {- b → m b -}
→ Type {- a -} → Q Exp {- a → m a -}

mkQ :: Q Exp {- r -} → Name {- b → r -}
→ Type {- a -} → Q Exp {- a → r -}

extN :: (Type {- c -} → Q Exp {- c → h c -} )
→ Name {- b → h b -}
→ Type {- a -} → Q Exp {- a → h a -}

extE :: ( Type {- c -} → Q Exp {- c → h c -} )
→ (Q Type {- b -} , Q Exp {- b → h b -} )
→ Type {- a -} → Q Exp {- a → h a -}

Figure 3: Core functions provided by TYB (part 2).

4.1 From gfoldl to thfoldl

While thfoldl is not the most primitive operator in TYB, it pro-
vides a convenient place from which to start and has an interface
that should be familiar to users of SYB.

In SYB, the gfoldl method of the Data class follows a pre-
dictable structure that can be seen by examining the definition of
gfoldl for the following List type.

data List = Nil | Cons Int List

instance Data List where
gfoldl k z = λe → case e of
Nil → z Nil
Cons x xs → z Cons ‘k‘ x ‘k‘ xs

The pattern here is that for any object, such as Cons x xs, the
z function is applied to the constructor, Cons, and the k function is
used to apply the result to the constructor’s arguments, x and xs.

In TYB, the equivalent operation, thfoldl, runs at compile
time and generates an AST fragment based on compile-time in-
formation about the constructors of a given type. It thus avoids the
runtime overheads involved in using gfoldl. While we do not give
an implementation for thfoldl until the end of Section 4.3, the
pattern that it follows can be seen by examining what it generates
for the List type. The following reduction is not quite right as it

Primitives
gfoldl :: Data a =>
(∀ d b. Data d => c (d → b) → d → c b)
→ (∀ g. g → c g)
→ a → c a

One-layer traversal

gmapT :: Data a => (∀ b. Data b => b → b) → a → a
gmapQ :: Data a => (∀ d. Data d => d → u) → a → [u]
gmapM :: (Data a, Monad m) =>

(∀ d. Data d => d → m d) → a → m a

Recursive traversal

everywhere :: (∀ b. Data b => b → b)
→ (∀ a. Data a => a → a)

everywhereM :: (Monad m) =>
(∀ b. Data b => b → m b)

→ (∀ a. Data a => a → m a)
everything :: (r → r → r)

→ (∀ b. Data b => b → r)
→ (∀ a. Data a => a → r)

Dispatch

mkT :: (∀ b. Typeable b => b → b)
→ (∀ a. Typeable a => a → a)

mkQ :: r → (∀ b. Typeable b => b → r)
→ (∀ a. Typeable a => a → r)

mkM :: Monad m => (∀ b. Typeable b => b → m b)
→ (∀ a. Typeable a => a → m a)

extT :: (Typeable b, Typeable a) =>
(a → a) → (b → b) → a → a

extQ :: (Typeable b, Typeable a) =>
(a → q) → (b → q) → a → q

extM :: (Typeable b, Typeable a, Monad m) =>
(a → m a) → (b → m b) → a → m a

Figure 4: Core functions provided by SYB.

glosses over the type of k, but it gives the right intuition, and we
will correct it in a moment.

thfoldl k z Jt List K 7→
Jλe → case e of
Nil → $(z J Nil K)
Cons x xs → $(z J Cons K ‘k‘ J x K ‘k‘ J xs K)K

The preceding reduction glosses over the type of k. In SYB, the
second argument of the k parameter is qualified by the Typeable
class indirectly through the Data class. This allows k to inspect the
type of its second argument and compute different results based on
that type. In TYB, the thfoldl function also allows k to inspect
the type of the constructor’s argument, but rather than using the
Typeable class, the Type of the argument is directly passed with
the argument. Thus, the preceding reduction is actually as follows.

thfoldl k z Jt List K 7→
Jλe → case e of
Nil → $(z J Nil K)
Cons x xs → $(k (k (z J Cons K)

Jt Int K J x K)
Jt List K J xs K)K

Owing to the additional argument to k, we do not use infix
notation here, but it is otherwise the same as the previous reduction.



Implementation: Reduction on Jt List K:

thfoldl: thmapQ f t0 = thfoldl k z t0 where
z c = J[]K
k c t x = J$(c) ++ [$(f t) x]K

thmapQ f Jt List K 7→
Jλe → case e of
Nil → []
Cons x xs → ([] ++

[$(f J Int K) x]) ++
[$(f J List K) xs]K

thcase: thmapQ f t0 = thcase g t0 where
g c [] = J[]K
g c ((t, x) : xs) = J$(f t) $(x) :

$(g c xs)K

thmapQ f Jt List K 7→
Jλe → case e of
Nil → []
Cons x xs → $(f Jt Int K) x :

$(f Jt List K) xs :
[]K

Figure 5: Implementation options for thmapQ and their resulting reductions.

4.2 One-layer traversal
With thfoldl, we can build one-layer traversals that apply a par-
ticular operation to the immediate descendants of an object. In
SYB, an example is gmapT, which applies a transformation to the
immediate descendants of an object. For the List type, gmapT be-
haves as follows.

gmapT f 7→ λe → case e of
Nil → Nil
Cons x xs → Cons (f x) (f xs)

The TYB version of this is thmapT and is similar except that it
generates code that does the transformation rather than doing the
transformation itself. In addition, f takes an argument indicating
the type of the constructor’s argument to which it is applied. On the
List type it reduces as follows.

thmapT f Jt List K 7→
Jλe → case e of
Nil → Nil
Cons x xs → Cons ($(f Jt Int K) x)

($(f Jt List K) xs)K

Note that the type of the Q Exp returned by f must vary accord-
ing to the Type given to f. Given the Type for type t, f should
return a Q Exp for an expression of type t → t.

We implement thmapT in terms of thfoldl as follows.

thmapT f t0 = thfoldl k z t0 where
z c = c
k c t x = J$(c) ($(f t) $(x))K

Other one-layer traversals such as thmapQ and thmapM can also
be implemented in terms of thfoldl, but the generated code is not
as efficient as we desire. The remainder of this subsection explores
how these inefficiencies occur. The next subsection shows how to
eliminate them by generalizing from thfoldl to thcase.

To see how these inefficiencies occur, consider the thfoldl-
based implementation of thmapQ in Figure 5. The left column of
that figure contains the implementation for an arbitrary type t0 ,
and for illustration purposes, the right column contains reductions
for Jt List K.

The thmapQ function returns a list of the results of applying f to
each immediate child while preserving the order of the children. So,
for example, the result from the leftmost child should be leftmost in
the returned list. Since thfoldl is a left fold instead of a right fold,
however, the implementation must use list append, (++), instead of
the more efficient list cons, (:).

This inefficiency may be small as the lists involved are bounded
in length by the number of arguments in a constructor and most
constructors have only a few arguments. Nevertheless, barring opti-
mizations by the compiler, it is less efficient than handwritten code.

The thfoldl-based implementation of thmapM shown in Fig-
ure 6 has a similar problem. It applies a monadic transform to each
immediate child. The ap function from Control.Monad is used to
apply a monad containing the constructor to the monadic computa-
tion for each of its arguments and has type:

ap :: (Monad m) => m (a → b) → m a → m b

The inefficiency of this implementation may not be immediately
obvious so consider the reduction of thmapM f Jt List K after
inlining ap and translating monadic binds to do notation:

thmapM f Jt List K 7→
Jλe → case e of
Nil → return Nil
Cons x xs → do c1 ← do c0 ← return Cons

x0 ← $(f Jt Int K) x
return (c0 x0 )

x1 ← $(f Jt List K) xs
return (c1 x1 )K

This code is semantically correct, but the Cons clause involves
three returns and four monadic binds. In the next subsection we
move from a thfoldl-based implementation to a thcase-based
implementation and show how this same code can be implemented
with only one return and two monadic binds.

For both thmapQ and thmapM, the inefficiency is due to thfoldl
being a left fold when the code being generated is more naturally
expressed as a right fold. This forces us to use (++) in the case of
thmapQ and ap in the case of thmapM.

Left folds are often equivalent to right folds so it is tempting
to think that given an appropriate trick, thfoldl might still be
sufficient. However, that equivalence holds only when the type
of the fold is sufficiently general. With thfoldl, the z and k
arguments cannot have such a general type and must return Q Exp.
This is because thfoldl is not just a fold. Rather, it generates
code that performs a fold at runtime. As part of that, it performs,
at compile time, folds over the arguments of the constructors, but
the results of those folds are not simply returned. Instead, they are
placed inside the Exp for a case statement that then discriminates
between constructors at runtime.

In SYB, the gfoldl function does not have this problem as it
is simply a fold over a particular value. Thus the type of gfoldl is
general enough to thread extra information through the fold.



Implementation: Reduction on Jt List K:

thfoldl: thmapM f t0 = thfoldl k z t0 where
z c = J return $(c) K
k c t x = J $(c) ‘ap‘ $(f t) $(x) K

thmapM f Jt List K 7→
Jλe → case e of
Nil → return Nil
Cons x xs → return Cons ‘ap‘

$(f Jt Int K) x ‘ap‘
$(f Jt List K) xs K

thcase: thmapM f t0 = thcase g t0 where
g c [] = J return $(c) K
g c ((t, x) : xs) = J $(f t) $(x) >>= λx’ →

$(g J $(c) x’ K xs) K

thmapM f Jt List K 7→
Jλe → case e of
Nil → return Nil
Cons x xs → do x’ ← $(f Jt Int K) x

xs’ ← $(f Jt List K) xs
return (Cons x’ xs’)K

Figure 6: Implementation options for thmapM and their resulting reductions.

Since efficiency is a prime consideration in the design of TYB,
we want to avoid the inefficiencies forced by the interface of
thfoldl. Compiler optimizations might eliminate some ineffi-
ciencies, but we should not rely too heavily on that. For example,
the monadic binds in thmapM might not be inlineable or the com-
piler might not be able to determine whether their implementation
follows the monad laws needed to eliminate these inefficiencies.
It is better to generate efficient code in the first place. The next
subsection shows how to do this.

4.3 From thfoldl to thcase

As shown in the previous subsection, while an efficient version of
thmapT can be implemented in terms of thfoldl, the same is not
true of thmapQ and thmapM. The structure of thfoldl imposes a
structure on the generated code that leads to runtime inefficiency.

To resolve this, we generalize the interface of thfoldl. The
essential task of thfoldl is the construction of an Exp containing
a case statement. With thfoldl, the user specifies each clause of
the case statement in terms of a fold over the arguments of a given
constructor. Instead of having the user specify clauses in terms of
folds, there is no reason not to simply pass the constructors and the
lists of their arguments to a user supplied function.

The thcase function provides such an interface. It takes a
function g and a type t0 . It constructs a case statement appropriate
for t0 and, for each constructor of t0 , calls g with the constructor
and a list of its arguments and argument types. The arguments are
provided as a simple list, so the folding strategy is left up to the
user. For example, with the List type it behaves as follows.

thcase g Jt List K 7→
Jλe → case e of
Nil → $(g J Nil K [])
Cons x xs → $(g J Cons K [

(Jt Int K, J x K),
(Jt List K, J xs K)])K

For primitive types3 such as Int, thcase passes the value itself
as the first argument to g. Effectively, the value is the constructor.
For example with Int, it behaves as follows.

thcase g Jt Int K 7→ Jλe → $(g J e K [])K

3 We consider Int a primitive type despite being it decomposable into an
I# constructor on an Int#. In a recursive traversal, this prevents the kinding
error of instantiating a polymorphic function on a type of kind # (e.g.,
instantiating return at Int#). It is an open question how best to give the
user control over what constitutes a primitive type.

The implementation of thcase is shown in Figure 7. At its
core, it uses the constructorsOf primitive provided by TYB to
inspect the constructors for the given type and build an appropriate
case statement. For non-primitive types, constructorsOf returns
Just of a pair of the constructor name and its argument types. For
primitive types, constructorsOf returns Nothing. For example,
we have the following reductions for Int and List, which return
the constructors of Int and List, respectively.

constructorsOf Jt Int K 7→ return Nothing
constructorsOf Jt List K 7→
do int ← Jt Int K

list ← Jt List K
return (Just [(’Nil , []),

(’Cons, [int, list])])

The newName and varE functions in Figure 7 are provided
directly by Template Haskell. The newName function creates a fresh
Name, and varE takes a Name and returns a Q Exp that is a variable
reference to that Name.

We are slightly abusing Template Haskell syntax in Figure 7.
Template Haskell neither supports the splicing of clauses into the
body of a case nor provides a quotation syntax for clauses. Thus,
instead of the quotations used in Figure 7, the actual implementa-
tion of thcase uses the AST constructors provided by Template
Haskell. In Figure 7, we use quotations simply because they are
easier to read and understand.

The constructorsOf function is implemented in terms of the
reify function provided by Template Haskell. It is used to in-
terrogate the compiler about the constructors of a particular type.
Though the intuition behind constructorsOf is simple, the im-
plementation needs to handle a variety of complications including
type synonyms, type substitutions that arise due to type constructor
application, and the various methods of defining types (e.g., data,
newtype, records, etc.). None of these are theoretically deep com-
plications, but the necessary code is verbose and not particularly
interesting. Thus we omit the implementation of constructorsOf
from this paper.

With the thcase function, efficient versions of thmapQ and
thmapM are trivial to define as shown in Figures 5 and 6. As shown
in the right hand columns, the generated code for types such as
List is exactly what one would expect in a handwritten traversal.

Finally, note that thfoldl is easily defined using thcase:

thfoldl k z t = thcase g t where
g ctor args = foldl (uncurry . k) (z ctor) args



thcase g t0 = do
cs ← constructorsOf =<< t0
case cs of
Nothing → Jλe → $(g J e K [])K
Just cs’ → Jλe → case e of $(mapM clause cs’)K

where clause (name, types) = do
args ← mapM (λt → newName "arg") types
let argsE = zip types (map varE args)
in J $(name) $(args) → $(g name argsE) K

Figure 7: The implementation of thcase.

4.4 Recursive traversal
Recursive traversals are easily defined in terms of single-layer
traversals. For example, the everywhere function applies a trans-
formation at every node in a tree. It is implemented by applying
the transformation to the current node and using thmapT to ap-
ply everywhere to each child. This results in recursively applying
the transformation to every descendant. Depending on whether the
transformation or the thmapT is applied first, this results in either a
bottom-up or a top-down traversal. The code for a naive implemen-
tation of such a function is:

everywhere f t = Jλx →
$(f t) ($(thmapT (everywhere f . return) t) x)K

This naive implementation has a flaw, however. At compile
time, it will loop forever if it is applied to a recursive type such
as List. This is because it recurses over the structures of types
instead of the structures of values. For example, on the List type,
the infinite loop is caused by the List in the Cons constructor.
When everywhere is called on List, it thus recursively calls
everywhere on List. That recursive call also recursively calls
everywhere on List, and so on. Where systems like SYB recurse
infinitely on recursive or cyclic values, this naive implementation
of everything recurses infinitely on recursive types.

Since recursive types are quite common in Haskell, this is a sig-
nificant problem. Fortunately, it is easily solved by memoizing the
compile-time calls to everywhere. Each call to everywhere on
a particular type generates the same Exp so rather than generating
duplicate expressions, we bind the expression to a variable that we
then reference as needed. For example, if we memoize all the types
in List (i.e., List and Int), the resulting reduction is:

everywhere f Jt List K 7→
J let memInt = λe → $(f Jt Int K) e

memList = λe → $(f Jt List K) (case e of
Nil → Nil
Cons x xs → Cons (memInt x)

(memList xs))
in memList K

Here memInt is the memoization at Int and memList is the
memoization at List. The recursive structure of the List type is
manifest in the recursive structure of memList.

On recursive or cyclic values, this will still recurse infinitely at
runtime just as handwritten code would, but memoizing eliminates
the problems with recursive types.

The memoizeExp function provided by TYB implements this
memoization for general types. The memoizeExp function takes
as its first argument the function to be memoized. It then passes
a memoized version of that function as the first argument to the
function itself. Essentially, it is a fixed-point operation but in the
process of “tying the knot” it adds memoization.

everywhere f t0 = t0 >>= memoizeExp rec where
rec r t = Jλe → $(f t)

($(thmapT r (return t)) e)K

everywhereM f t0 = t0 >>= memoizeExp rec where
rec r t = Jλe → $(f t) =<<

($(thmapM r (return t)) e)K

everything o f t0 = t0 >>= memoizeExp rec where
rec r t = Jλe → foldl $(o) J $(f t) e K

($(thmapQ r (return t)) e)K

Figure 8: Implementations for the recursive traversal functions.

The everywhere, everywhereM, and everything functions
provided by TYB are implemented using memoizeExp as shown
in Figure 8. These implementations handle recursive types without
recurring infinitely at compile time.

The implementation of memoizeExp is a standard memoization
keyed by the Type that is being traversed and thus its implemen-
tation is omitted from this paper. However, there is a caveat to
the memoization process: polymorphically recursive, non-regular
types can still lead to infinite recursion at compile time. For exam-
ple, consider the following type:

data T a = Base a | Double (T (a, a))

The T Int type recursively contains T (Int, Int) which
recursively contains T ((Int, Int), (Int, Int)) and so on.
Since these are all different types, memoization cannot reuse the
expressions generated for each of these types and thus an infinite
recursion can occur at compile time. The system presented in this
paper does not provide a solution for this situation, unlike SYB,
which handles it just fine.

Finally, note that these traversals cannot operate on types con-
taining variables. For example, $(everything f Jt ∀ a. [a] K)
is a compile time error as thcase has no way to determine the
constructors of the type a.

4.5 Selective traversal
As discussed later in Section 5.4, many traversals benefit signif-
icantly from skipping the parts of a traversal that reach a value
having a type that cannot contain any types of interest. For exam-
ple, given that an HsName cannot occur in a String, there is no
point in traversing the contents of a String when looking for an
HsName. This is easily implemented by passing a predicate to the
traversal that tells it when to stop. Figure 9 shows the implemen-
tation of everywhereBut as an example of this. In general, the
predicate can be anything, but a particularly useful one is inType,
which is also shown4 in Figure 9. It uses the expandType primi-
tive provided by TYB to expand type synonyms and remove kind
annotations before comparing the current type, t, against the tar-
get type, s. This expansion ensures that types like String and
[Char] are considered equal. If t has already been seen, then we
are at a cycle in the type structure and inType returns false. If s
and t match, then inType returns true. In all other cases, inType
uses constructorsOf to get the potential types of immediate sub-
terms and recurses over them. Thus it returns true if a term of type
t can contain a term of type s and returns false if not.

4 The practical implementation of inType is a bit more careful about keep-
ing track of seen types and avoids the exponential explosion latent in this
version by storing the seen types in an IORef embedded in the Q monad.



everywhereBut q f t0 = t0 >>= memoizeExp rec where
rec r t = do
b ← q t
if b then Jλe → e K

else Jλe → $(f t)
($(thmapT r (return t)) e)K

inType s t = do s’ ← expandType; rec [] s’ t where
rec seen s t = do
t’ ← expandType t
if t’ ‘elem‘ seen then return False
else if t’ ≡ s then return True
else do cs ← constructorsOf t’

case cs of
Nothing → return False
Just cs’ → check (t’ : seen) s

(concatMap snd cs’)
check seen s [] = return False
check seen s (t : ts) =
do t’ ← rec seen s t

if t’ then return True else check seen s ts

everywhereFor name =
do t ← typeOfName name

everythingBut (liftM not . inType (arg t))
where arg :: Type → Type

arg (AppT (AppT ArrowT t) _) = t
arg (ForallT _ _ t) = arg t

Figure 9: Selective traversal implementations.

To further simplify the task for the user, we can combine the
typeOfName primitive provided by TYB with everywhereBut
and inType. The result is everywhereFor in Figure 9. The
typeOfName primitive returns the type of the binding for a par-
ticular Name. The everywhereFor function inspects the result of
typeOfName using arg and based on that makes an appropriate
call to everywhereBut and inType.

These are just a few of the traversals easily expressed by TYB.
The full API includes functions for left and right biased accumula-
tion, strict traversals and many others. As shown in these examples,
however, it is straightforward for users to write additional traversals
if the existing ones do not meet their needs.

4.6 Dispatch
The f function that the user passes to recursive traversals takes
the type of a particular value in the traversal and returns an AST
fragment appropriate for that type. The dispatch operators provide
convenient shortcuts for the common cases.

The mkT, mkM, and mkQ functions expect the Name of a function
and, based on the type of that function, return an appropriate value
for the f argument of traversals. These functions expect the name
of a transform function, a monadic transform function, or a query
function respectively. They return a function that compares the type
of the named function to see whether it is appropriate for the type
to which f is applied. If it is, then the returned Exp is a reference to
the named function. If not, then the returned Exp is a reference to a
neutral element. For mkT, this neutral element is id. For mkM, it is
return. For mkQ, it is provided by the user.

The extN function works similarly except that instead of return-
ing a neutral element when not returning a reference to the named
function, it delegates to another function provided by the user. This
makes it possible to chain together multiple functions that each

handle their own type. Unlike in SYB, where different operators
are used depending on whether the function is monadic, a query, or
neither, extN serves all three purposes in TYB.

The most general dispatch operator is extE which takes a Type
directly rather than extracting it from the type of the function
specified by a Name.

The implementation of all these functions is straightforward
given the typeOfName and expandType primitives and are omitted
from this paper.

4.7 Summary
The TYB system has three fundamental primitives that deal with
the complexities of Template Haskell. They are constructorsOf,
typeOfName and expandType. The higher-layers in the system are
straightforwardly implemented in terms of these primitives, and
though it does require thinking in terms of meta-programming,
it is relatively easy to extend the system with new traversals and
operations.

5. Performance
To judge the relative performance of TYB, we implemented sev-
eral generic-programming tasks using both TYB and other generic-
programming systems. We then compared these implementations
to handwritten implementations. We selected benchmarks imple-
mentable by all of the systems as we aim to measure performance,
and not features.

Among the benchmarked systems, TYB and Geniplate [Au-
gustsson 2011] use Template Haskell to generate traversals at com-
pile time, while the other systems use more traditional generic-
programming techniques. Geniplate shares the performance ben-
efits of Template Haskell that TYB has, but presents the user with a
much more limited interface as we discuss later in Section 6.2. The
benchmark results are shown in Figure 10 and are normalized rela-
tive to handwritten code. In general, TYB and Geniplate performed
several times faster than other systems. The results are discussed in
more detail at the end of this section.

5.1 Benchmarks
List manipulation The map and sum benchmarks implement map
and sum from Haskell’s Prelude but in a generic-programming
style and only for Int lists. For the handwritten version of these
benchmarks, we use map and sum from the GHC Prelude. The
list type is small enough that there is little need for a generic
implementation of these functions, but these benchmarks have the
advantage of having preexisting, efficient, standard, handwritten
implementations.

GPBench Rodriguez et al. [2008] present a benchmarking suite
for generic-programming systems called GPBench. While its pri-
mary focus is evaluating the features of generic-programming sys-
tems, three of the benchmarks evaluate performance. They are se-
lectInt, rmWeights, and geq. In the versions that we use, they all
operate over the following type of weighted trees.

data WTree a w = Leaf a
| Fork (WTree a w) (WTree a w)
| WithWeight (WTree a w) w

The selectInt benchmark collects a list of all values of type
Int occurring in a WTree Int Int. It is a query traversal. The
rmWeights benchmark traverses a WTree Int Int replacing every
WithWeight t w with t. It is a transform traversal. The geq bench-
mark traverses two WTree objects checking that they are equal and
is a twin or parallel traversal. This sort of traversal is not supported
by several of the benchmarked systems and is omitted from our
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Figure 10: Benchmark running time relative to handwritten code.

benchmarking tests. For these benchmarks the handwritten imple-
mentations are taken directly from GPBench.

Notably absent from GPBench is a benchmark for measuring
the performance of monadic traversal so we add one benchmark not
in the original GPBench that we call renumberInt. The renumberInt
benchmark traverses a WTree Int Int and uses a state monad to
replace each Int with a unique value.

AST manipulation Both the list manipulation and GPBench
benchmarks operate on fairly small types. The list type has only
two constructors. The WTree type has only three constructors. Both
are recursive in only one type.

To evaluate the performance on larger types, we include bench-
marks on a real-world AST. Specifically, we use the AST types
from Language.Haskell.Syntax, which includes types for ex-
pressions, declarations, statements, patterns and many other Haskell
forms. In total, over 30 different types with over 100 construc-
tors are involved, in addition to types from the Prelude such as
booleans, strings, tuples, lists, and so forth.

The AST object we use is the parsed, preprocessed source for
Data.Map from the source for GHC version 7.0.3. The prepro-
cessed source file is 2,164 lines long, and the resulting AST has
74,921 nodes.

The prefixName benchmark finds every HsName object and pre-
fixes it with an underscore (_). The countName benchmark counts
the number of HsName objects in the AST. The listName benchmark
returns a list of all HsName occurring in the AST.

For these benchmarks, the handwritten version is written in a
straightforward, mechanical style. No attempt was made to tune the
boilerplate portion of the code. Base cases, such as String, are not
traversed by the handwritten implementation, but we did no further
tuning of traversals as that would be prohibitively time consuming
and error prone.

5.2 Technical specifications
Aside from the handwritten and TYB versions, each benchmark
was also implemented using

− Geniplate version 0.6.0.0 [Augustsson 2011],

− Uniplate5 [Mitchell and Runciman 2007],

− Instant Generics (IG) version 0.3.4 [Chakravarty et al. 2009;
van Noort et al. 2008],

− Alloy version 1.0.0 [Brown and Sampson 2009],

− Scrap Your Boilerplate (SYB) version 0.3.6 [Lämmel and Pey-
ton Jones 2003],

− Extensible and Modular Generics for the Masses (EMGM) ver-
sion 0.4 [Oliveira et al. 2006], and

− Smash Your Boilerplate (Smash) [Kiselyov 2006].

Scrap Your Boilerplate was included because it is the most well
known and widely used generic-programming system for Haskell.
EMGM, Smash, and Uniplate were included because Rodriguez
et al. [2008] identified them as the best performing of the generic-
programming systems that they surveyed. Alloy and IG are in-
cluded as they were published after the work by Rodriguez et al.
and thus were not included in their survey but report good per-
formance. Geniplate was included because it also uses Template
Haskell to generate traversals at compile time.

We tested both the “with overlapping” and “without overlap-
ping” variants of Alloy, but they produced essentially identical re-
sults. We used the “direct” variant of Uniplate as that is the fastest
variant. We used the version of Smash available from the GPBench
repository (http://code.haskell.org/generics/).

We benchmarked with GHC 7.0.3 using −O2 on a 3.2 GHz, 64-
bit Xeon with 4 GB of RAM running Ubuntu Linux 11.10.

5.3 Results
The results of these benchmarks are shown in Figure 10. All times
are normalized relative to the performance of the handwritten im-
plementations. Times are calculated using Criterion [O’Sullivan
2012] and are the mean of several thousand executions. Error bars

5 Uniplate’s authors graciously provided us with a preview version that
fixes some performance bugs identified by these benchmarks. The results
reported here are from that version. A public release with these fixes should
be available soon.

http://code.haskell.org/generics/
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Figure 11: Benchmark results for alternative traversal strategies.

are one standard deviation, but in most cases they are too small to
see on the chart.

Care must be taken when interpreting these results. While
the benchmarks were chosen from standard generic-programming
tasks, they do not necessarily represent a wide-enough cross sec-
tion from which to draw any conclusions beyond broad trends. This
is a particularly important caveat as both Rodriguez et al. [2008]
and Brown and Sampson [2009] report that the relative perfor-
mance of many systems varies widely depending on the details of
the benchmark.

Nevertheless, a few trends are clear. The reputation of SYB for
being slow is well deserved. In every benchmark, it is at least ten
times slower than handwritten code. In some cases, it is almost one
hundred times slower. Smash exhibits a performance pattern simi-
lar to that of SYB. Uniplate and IG perform considerably better but
are still often five to ten times slower than handwritten code. Alloy
comes close to matching the performance of handwritten code in
several of the transformation benchmarks, but it performs poorly in
the query and monadic benchmarks. In the query benchmarks, it is
hampered by its use of a state monad to encode query traversals.

The performance of the Template Haskell based systems, TYB
and Geniplate, stands in contrast to the other systems. With few
exceptions, they consistently perform on par with (or in some cases,
even better than) handwritten code.

5.4 Performance factors
Traversal strategy Different generic-programming systems use
different strategies to perform traversals. Systems that use less effi-
cient traversal strategies are at a disadvantage in these benchmarks
regardless of the efficiency of their generic-programming primi-
tives. This makes fair comparisons between different systems tricky
and introduces confounding factors that must be considered when
evaluating these benchmark results.

For many traversals, threading an accumulator through the com-
putation is much more efficient than simply returning a result. De-
spite this, SYB, Alloy, EMGM and Smash do not use accumula-
tors in their standard traversals. This hurts their performance in
the query benchmarks (sum, countName, listName and selectInt).
When applicable, both Geniplate and Uniplate automatically use
accumulators and it is impossible not to use accumulators. In TYB,
accumulator style is trivial to express and is used in the results in

Figure 10 when applicable. To quantify this effect, Figure 11a com-
pares versions of the query benchmarks for TYB that use accumu-
lators against versions that do not.

Selective traversal Another confounding factor is that some sys-
tems (such as Alloy, Uniplate, and Geniplate) automatically skip
parts of a traversal when a value is reached that has a type that can-
not contain any of the target types. For example, a String cannot
contain an HsName and so those parts of the traversal can be safely
skipped.

Other systems, such as SYB, can skip parts of the traversal but
must be explicitly told which types to skip. Explicitly listing all
types that cannot contain a particular type is a heavy burden on the
user when, as in the AST manipulation benchmarks, the number of
types involved is large. Thus in the results in Figure 10, we have
used the default behavior for each system with regards to skipping.

To quantify this effect, Figure 11b compares versions of the
AST benchmarks for TYB that skip unnecessary parts of the traver-
sal against versions that do not. The results for TYB in Figure 10
skip parts of a traversal when applicable.

Useless computations For all of the generic programming sys-
tems, renumberInt is significantly slower than the handwritten
version. Upon investigation, we found that for TYB the perfor-
mance difference is due to an extra bind (>>=) and return at the
parts of the traversal without type-specific behaviour. For example,
mkM ’incInt returns return on non-Int types. The surround-
ing everywhereM uses a monadic bind to thread traversal results
through that return. Of course, these have no semantic effect on
the results and should be optimized away, but with GHC 7.0.3 they
are not. With GHC 7.4.1, they are optimized and the performance
of TYB matches handwritten code. Some of the frameworks re-
quire non-trivial changes to port to GHC 7.4.1, so the numbers we
report in Figure 10 are all based on 7.0.3.

Note that Geniplate does not speed up to match handwritten
code when compiled with GHC 7.4.1. One possible cause is gra-
tuitous monadic lifting of both construtors and values prior to
monadic application (i.e., ap) similar to the inefficiencies that arise
with thfoldl as discussed in section 4.2.

Finally, neither Uniplate nor Geniplate have a direct mechanism
for query traversals. Instead they provide a mechanism for listing
all objects of a particular type within an object. The user must then



fold over this list to construct a query result. This intermediate list
costs performance on the query benchmarks.

6. Related Work
There are many generic-programming systems for Haskell, and
even projects to extend Haskell to directly support generic pro-
gramming [Jansson and Jeuring 1997; Hinze et al. 2002]. Hinze
et al. [2007] and Rodriguez et al. [2008] survey several of these
systems. We review only a few of them here and limit ourselves to
systems with particularly interesting performance properties.

6.1 Uniplate
Uniplate [Mitchell and Runciman 2007] has two particularly no-
table aspects. The first is that Mitchell and Runciman include a
performance evaluation of their system. The benchmarking results
reported in that paper show the “direct” variant of Uniplate tak-
ing between 1.16 and 3.28 times the time of a handwritten traver-
sal. On the other hand, our initial benchmark results showed Uni-
plate running between 6 and 10 times slower. When we reported
this discrepancy to the authors of Uniplate, they determined that
this was caused by certain intermediate structures not being elim-
inated as expected. We suspect this is due to differences in the
optimizations implemented by different versions of the compiler.
This is consistent with the great variation in the performance of
generic-programming systems between compiler versions that was
observed by Rodriguez et al. [2008]. An improved version of Uni-
plate is being developed that address some of these performance
regressions, but it has not yet been publicly released. One of the
advantages of TYB is that it does not require extensive tweaks or
optimization pragmas to achieve its performance. Since it generates
code similar to handwritten code, it has performance similar to that
of handwritten code. This is a robust property that is independent
of compiler version.

The second notable aspect of Uniplate is that it is based on
the observation that “most traversals have value-specific behavior
for just one type” [Mitchell and Runciman 2007]. For example,
the non-generic parts of selectInt and listName are limited to the
Int and HsName types respectively. By limiting the scope to such
scenarios, the interface is greatly simplified.

Nevertheless, there are many times when the non-generic parts
of the traversal involve multiple types. For example, an identifier-
freshening pass in a compiler needs to deal with every binding form
of an AST. In a language that distinguishes between declarations,
expressions and statements, there may be binding forms in each
of these different types. Thus while it may be worth making the
single-type scenarios easy to write, in TYB we have chosen to keep
the interface general enough to express general traversals.

6.2 Geniplate
Geniplate [Augustsson 2011] uses an interface similar to that of
Uniplate, but uses Template Haskell to generate custom traversals.
Thus, for the sorts of traversals that it supports, it executes effi-
ciently. At present, there is no published information or literature
about Geniplate other than the code itself.

Like Uniplate, it automatically skips parts of the traversal that
contain no interesting types. The performance benefits of this are
clear from the results in Figure 11b.

Also like Uniplate, Geniplate cannot express certain traver-
sals involving multiple types. Operations that take only a single
traversal in TYB might need multiple traversals or might not even
be expressible when using Geniplate. For example, the identifier-
freshening pass mentioned earlier that cannot be implemented in
Uniplate cannot be implemented in Geniplate either. We found
many examples of such traversals when implementing the Habit
compiler.

Though they were developed independently without knowledge
of each other, both Geniplate and TYB are similar in that they
demonstrate the performance benefits of using Template Haskell to
implement generic-programming systems. Geniplate does this for
a Uniplate-style interface while TYB does this for the more general
and flexible SYB-style interface. Note that the generality of TYB
means it is easy to implement a Geniplate-like library in terms of
TYB but the converse is not true.

6.3 Instant Generics
Instant Generics [Chakravarty et al. 2009; van Noort et al. 2008]
uses a generic representation to uniformly represent the children of
any given datatype in terms of sum and product types. A traversal
can then be written in terms of that representation. Associated types
are used to flexibly express the types in the generic representation.

Instant Generics requires the user to write a type class for
each generic operation and to instantiate that class at appropriate
types. The boilerplate parts of the traversal are handled by a default
instance written by the user.

Instant Generics averages four times slower than the hand-
written code, placing it behind TYB and Geniplate but notably
faster than most other generic-programming systems.

6.4 Alloy
Alloy [Brown and Sampson 2009] was developed due to a need
to have a high-performance generic-programming system. Its au-
thors developed it while implementing a nanopass-based com-
piler [Sarkar et al. 2004] and developed it in order for their “com-
piler passes to traverse the abstract syntax tree quickly.” Though
we have chosen a different approach, our system is motivated by
similar concerns.

Brown and Sampson include a sophisticated statistical analysis
of the performance of their system and show it is faster than “exist-
ing approaches for traversing heterogeneously-typed trees.”

Alloy does not directly feature a facility for constructing query
traversals. Instead, a state or writer monad must be used to collect
query results. This causes poor performance in the sum, selectInt,
countName and listName benchmarks.

Alloy avoids traversing types that do not contain any types of
interest. It does this automatically as a consequence of the structure
of its design, whereas most other systems add this feature after the
fact. In the countName and listName benchmarks, implementing
this idea in TYB cuts the runtime in half.

Alloy requires a large number of class instances for the datatypes
being traversed. Alloy includes a tool for generating these in-
stances, so this is not a burden on the programmer. Nevertheless,
the source code for these instances can be quite large. For example,
with the AST types in Language.Haskell.Syntax the generated
source code for these instances is 1.3 MB when used with overlap-
ping and 3.8 MB when used without overlapping. Compile times on
these files can be quite long. On larger types such as the AST types
in Language.Haskell.Exts, compilation failed to complete on
our test machine even after several hours.

6.5 Prototyping Generic Programming in Template Haskell
Norell and Jansson [2004] discuss the use of Template Haskell
for prototyping generic-programming systems. In particular, they
present prototype implementations of PolyP and Generic Haskell
written in Template Haskell and use these prototypes to relate and
contrast PolyP and Generic Haskell with each other. They do not
consider the question of performance.

6.6 Optimizing generics is easy!
Magalhães et al. [2010] demonstrate that, with appropriate tweak-
ing of various compiler inlining flags, many generic-programming



traversals can be optimized to more closely match the performance
of handwritten code. Their approach is limited by how much con-
trol the compiler provides over the inlining process, and its effec-
tiveness varies significantly depending on the design of the under-
lying generic-programming system.

In contrast, TYB does not need aggressive inlining in order to
be efficient. By generating specialized traversals, it already does
the work that inlining would do.

7. Conclusion
The idea of generating traversal code via metaprogramming is not
new and is a widely used technique in other languages. However,
in the Haskell community it has largely been eschewed in favor of
type and class based techniques. Nevertheless, the metaprogram-
ming approach offers significant performance advantages.

Since TYB generates code at compile time, it does not pay the
overheads seen in most other generic-programming systems for
Haskell. It generates code that is similar to what a programmer
would write by hand, and thus it runs as fast as handwritten code.
But unlike handwritten code, it is easy to change the design of the
traversal and to experiment with different approaches to see which
performs best. For example, with TYB, it requires changing only
a few lines to move from a list representation to a set representa-
tion for query results or from a non-accumulating recursion to an
accumulating recursion.

TYB has been used by our group to implement over a dozen
passes in the Habit compiler where it has proven both useful and
effective. The ease with which new traversals can be written en-
courages factoring compiler passes into small well defined traver-
sals instead of combining multiple operations into one large pass.
At the same time, TYB does not incur the overheads seen in other
generic-programming systems, and we can rely on the efficiency of
the resulting traversals.
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generic programming in Haskell. In Roland Backhouse, Jeremy Gib-
bons, Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Pro-
gramming, volume 4719 of Lecture Notes in Computer Science, pages
72–149. Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-76785-5.
doi: 10.1007/978-3-540-76786-2 2.

Patrik Jansson and Johan Jeuring. Polyp—a polytypic programming lan-
guage extension. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’97, pages
470–482, New York, NY, USA, 1997. ACM. ISBN 0-89791-853-3. doi:
10.1145/263699.263763.

Oleg Kiselyov. Smash your boiler-plate without class and typeable, Au-
gust 2006. URL http://article.gmane.org/gmane.comp.lang.
haskell.general/14086.
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