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Abstract

Current algorithms for context-free parsing inflict a trade-

off between ease of understanding, ease of implementation,

theoretical complexity, and practical performance. No algo-

rithm achieves all of these properties simultaneously.

Might et al. (2011) introduced parsing with derivatives,

which handles arbitrary context-free grammars while be-

ing both easy to understand and simple to implement. De-

spite much initial enthusiasm and a multitude of independent

implementations, its worst-case complexity has never been

proven to be better than exponential. In fact, high-level ar-

guments claiming it is fundamentally exponential have been

advanced and even accepted as part of the folklore. Perfor-

mance ended up being sluggish in practice, and this slug-

gishness was taken as informal evidence of exponentiality.

In this paper, we reexamine the performance of parsing

with derivatives. We have discovered that it is not exponen-

tial but, in fact, cubic. Moreover, simple (though perhaps not

obvious) modifications to the implementation by Might et al.

(2011) lead to an implementation that is not only easy to un-

derstand but also highly performant in practice.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Parsing

Keywords Parsing; Parsing with derivatives; Performance

1. Introduction

Although many programmers have some familiarity with

parsing, few understand the intricacies of how parsing actu-

ally works. Rather than hand-write a parser, many choose to

use an existing parsing tool. However, these tools are known

for their maintenance and extension challenges, vague error

descriptions, and frustrating shift/reduce and reduce/reduce

conflicts (Merrill 1993).
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In a bid to improve accessibility, Might et al. (2011)

present a simple technique for parsing called parsing with

derivatives (PWD). Their parser extends the Brzozowski

derivative of regular expressions (Brzozowski 1964) to sup-

port context-free grammars (CFGs). It transparently handles

language ambiguity and recursion and is easy to implement

and understand.

PWD has been implemented in a number of languages

(McGuire 2012; Vognsen 2012; Mull 2013; Shearar 2013;

Byrd 2013; Engelberg 2015; Pfiel 2015). However, these

tend to perform poorly, and many conjectured that the al-

gorithm is fundamentally exponential (Cox 2010; Spiewak

2011) and could not be implemented efficiently. In fact,

Might et al. (2011) report that their implementation took two

seconds to parse only 31 lines of Python.

In this paper, we revisit the complexity and performance

of PWD. It turns out that the run time of PWD is linearly

bounded by the number of grammar nodes constructed dur-

ing parsing, and we can strategically assign unique names to

these nodes in such a way that the number of possible names

is cubic. This means that the run time of of PWD is, in fact,

cubic, and the assumed exponential complexity was illusory.

Investigating further, we revisit the implementation of

PWD by Might et al. (2011) by building and carefully pro-

filing a new implementation to determine bottlenecks ad-

versely affecting performance. We make three significant

improvements over the original algorithm: accelerated fixed

points, improved compaction, and more efficient memoiza-

tion. Once these are fixed, PWD’s performance improves to

match that of other general CFG parsers.

This paper makes the following contributions:

– Section 2 reviews the work by Might et al. (2011) on

PWD and its key ideas.

– Section 3 investigates PWD’s complexity and shows that

its upper bound is cubic instead of the exponential that

was previously believed. This makes PWD’s asymptotic

behavior on par with that of other general CFG parsers.

– Section 4 examines PWD’s performance and shows

that targeted algorithmic improvements can achieve a

speedup of almost 1000 times over the implementation

in Might et al. (2011).
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2. Background

Brzozowski (1964) presents and Owens et al. (2009) expand

upon derivatives of regular expressions as a means to recog-

nize strings that match a given regular expression.

With PWD, Might et al. (2011) extend the concept of

string recognition via Brzozowski derivatives to CFGs. The

essential trick to this is handling recursively defined lan-

guages. Computing the derivative of a non-terminal may re-

quire the derivative of that same non-terminal again, causing

an infinite loop. Might et al. (2011) circumvent this using a

combination of memoization, laziness, and fixed points. We

briefly review their technique in this section.

2.1 The Brzozowski Derivative

Brzozowski (1964) matches regular expressions against an

input by successively matching each character of the input

against the set of words in the semantics of that regular

expression. In three steps, he computes the set of words (if

any) that can validly appear after the initial input character.

First, he takes the first character of the input and compares it

to the first characters of the words in the semantics. Second,

he keeps only the words whose first characters match and

discards all others. Finally, he removes the first character

from the remaining words.

Brzozowski (1964) calls this the derivative of a language

and formally defines it as the following, where c is the input

character and JLK is the set of words in the language L:

Dc (L) = {w | cw ∈ JLK}

For example, with respect to the character f, the deriva-

tive of the language for which JLK = {foo, frak, bar} is

Df (L) = {oo, rak}. Because foo and frak start with the

character f and bar does not, we keep only foo and frak

and then remove their initial characters, leaving oo and rak.

We repeat this process with each character in the input

until it is exhausted. If, after every derivative has been per-

formed, the resulting set of words contains the empty word,

ǫ, then there is some word in the original language consist-

ing of exactly the input characters, and the language accepts

the input. All f this processing takes place at parse time, so

there is no parser-generation phase.

2.2 Parsing Expressions

Explicitly enumerating the possibly infinite set of words

in a language can be cumbersome, so we express regular

languages using the expression forms in Figure 1. For the

most part, these consist of the traditional regular expression

forms. The ǫs form is the language of the empty string, ∅ is

the empty language, c is a single token, (◦) concatenates,

and (∪) forms alternatives. In Might et al. (2011), every

expression also produces an abstract syntax tree (AST) upon

success. So, ǫs is annotated with a subscript s indicating the

AST to be returned, and the reduction form L →֒ f behaves

like L, except that it returns the result of applying f to the

Forms

L ::= ∅ | ǫs | c | L1 ◦ L2 | L1 ∪ L2 | L →֒ f

s, t ∈ T Abstract syntax trees

f ∈ T → T Reduction functions

Semantics

JLK ∈ ℘ (Σ∗ × T )

J∅K = {} Empty Lang.

JǫsK = {(ǫ, s)} Empty Word

JcK = {(c, c)} Token

JL1 ◦ L2K = {(uv, (s, t)) | (u, s) ∈ JL1K Concatenation

and (v, t) ∈ JL2K}

JL1 ∪ L2K = {(u, s) | (u, s) ∈ JL1K Alternation

or (u, s) ∈ JL2K}

JL →֒ fK = {(w, f s) | (w, s) ∈ JLK} Reduction

Figure 1. Parsing expression forms

AST returned by L. The semantics of these forms are as in

Figure 1 and are defined as sets of accepted strings paired

with the AST that returns for that string. For the purposes of

parsing single tokens, c, and concatenations, (◦), we assume

the type of ASTs includes tokens and pairs of ASTs.

Note that in this paper, we use ǫ for the empty word

and ǫs for the parsing expression that represents a language

containing only the empty word. Similarly, we use c to refer

to either the single-token word or the parsing expression

signifying a language containing only one token.

Also, although Might et al. (2011) include a form for

Kleene star, we omit this. Once these forms are extended

from regular expressions to CFGs in Section 2.5, any use

of Kleene star can be replaced with a definition like the

following.

L∗ = ǫs ∪ (L ◦ L∗)

2.3 Derivatives of Parsing Expressions

The derivatives of the language forms in Figure 1 with re-

spect to a token c are shown in Figure 2. The derivative of

∅ is ∅, as J∅K contains no words beginning with any charac-

ter. For the same reason, the derivative of ǫs is also ∅. The

derivative of a token c depends on whether the input token

matches c; the result is ǫc if the input token matches and ∅ if

not. The derivatives of L1 ∪ L2 and L →֒ f merely take the

derivatives of their children.

The derivative of L1 ◦ L2 has two cases, depending on

whether JL1K contains ǫ. If JL1K does not contain ǫ, every

word in the concatenated language starts with a non-empty

word from L1. This means the derivative of L1 ◦ L2 filters

and removes the first token from the words in L1 while
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Dc (∅) = ∅

Dc (ǫ) = ∅

Dc (c
′) =

{

ǫc if c = c′

∅ if c 6= c′

Dc (L1 ∪ L2) = Dc (L1) ∪Dc (L2)

Dc (L1 ◦ L2) =

{

Dc (L1) ◦ L2 if ǫ /∈ JL1K

(Dc (L1) ◦ L2) ∪Dc (L2) if ǫ ∈ JL1K

Dc (L →֒ f) = Dc (L) →֒ f

Figure 2. Derivatives of parsing expression forms

δ (∅) = false

δ (ǫs) = true

δ (c) = false

δ (L1 ∪ L2) = δ (L1) or δ (L2)

δ (L1 ◦ L2) = δ (L1) and δ (L2)

δ (L →֒ f) = δ (L)

Figure 3. Nullability of parsing expression forms

leaving L2 alone. Thus, the derivative of L1 ◦ L2 if L1 does

not contain ǫ is Dc (L1) ◦ L2.

On the other hand, if JL1K does contain ǫ, then the deriva-

tive contains not only all the words in Dc (L1) ◦ L2 but also

derivatives for when the ǫ in L1 is concatenated with words

in L2. Since these concatenations are all words from L2, this

adds Dc (L2) to the derivative. In this case, Dc(L1 ◦ L2) is

therefore (Dc (L1) ◦ L2) ∪Dc (L2).

2.4 Nullability

Because the derivative of a concatenation L1 ◦ L2 depends

on whether JL1K contains the empty string, ǫ, we define a

nullability function, δ (L), in Figure 3 such that it returns

boolean true or false when JLK respectively contains ǫ or

does not. The null language, ∅, contains nothing, and the

single-token language, c, contains only the word consisting

of the token c. Because neither of these languages contain ǫ,
their nullability is false. Conversely, the ǫs language contains

only the ǫ word, so its nullability is true. The union of two

languages contains ǫ if either of its children contains ǫ, so

the union is nullable if either L1 or L2 is nullable. Given

how the semantics of the concatenation L1 ◦ L2 are defined

in Figure 1, in order for L1 ◦L2 to contain ǫ, there must exist

a uv equal to ǫ. This happens only when u and v are both ǫ,
so a concatenation is nullable if and only if both its children

are nullable. Finally, the words in a reduction L →֒ f are

those words in L, so its nullability is the nullability of L.

L

∪

c◦

c

(a) Graph structure of L

Dc (L)

∪

ǫ◦

c

(b) Graph structure of Dc (L)

Figure 4. An example grammar and its derivative

2.5 Derivatives of Context-free Languages

2.5.1 Representation

Might et al. (2011) generalize from taking derivatives of

regular expressions to taking derivatives of full CFGs. In so

doing, Might et al. (2011) do not use typical CFGs but do

use an equivalent construction.

First, instead of non-terminals mapping to zero or more

sequences of terminals and non-terminals, they map to a

parsing expression. This is akin to the parsing expressions

in Ford (2004). For example, any CFG can be converted to

this expression form by converting productions of the form

N ::= X11 · · ·X1m1
| · · · | Xn1 · · ·Xnmn

to

N = X11 ◦ . . . ◦X1m1
∪ · · · ∪Xn1 ◦ . . . ◦Xnmn

Second, in the data structures representing grammars, in-

stead of using explicitly named non-terminals, parsing ex-

pressions point directly to the non-terminal’s parsing expres-

sion. For example, we may have a grammar like the follow-

ing, where c is some token.

L = (L ◦ c) ∪ c

Might et al. (2011) represent this as the data structure in

Figure 4a with the edge where L refers back to itself, form-

ing a cycle in the data structure. For the purposes of discus-

sion, though, we will refer to non-terminals and their names

even though the actual representation uses direct pointers in-

stead of non-terminal names.

2.5.2 Computation

A complication of this representation occurs when taking a

derivative. If we blindly follow the rules in Figure 2, then the

derivative of L by c is the following.

Dc(L) = (Dc(L) ◦ c) ∪ ǫ

This Dc (L) is recursive, so to compute Dc (L), we must

already know Dc (L)!
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Might et al. (2011) solve this problem with two measures.

First, they memoize their derivation function, derive, by

keeping a table containing, for each set of arguments, the

results that it returns. When derive is called, if the table al-

ready contains an entry for its arguments, derive uses the

result in the entry instead of re-computing the derivative.

Otherwise, derive performs the calculation as usual and,

before returning, stores its result in the memoization table

so it can be used by any further calls with those same argu-

ments. If the same derivative is needed multiple times, this

ensures it is computed only once.

On its own, memoization does not prevent infinite loops

due to cycles, however, because derive adds memoization

table entries only after it finishes computing. This is where a

second measure comes into play. Before doing any recursive

calls, derive puts a partially constructed grammar node that

is missing its children into the memoization table. For the ex-

ample of Dc (L), we know without having to recur into L’s

children that the resultant node is a ∪ . Thus, we can place

such a node in the memoization table before computing its

children and temporarily mark its children as unknown. Any

recursive calls to Dc (L) can find and use this memoized re-

sult even though the derivatives of its children have not yet

been calculated. When the derivatives for the node’s children

return, we update the children of the output node to point to

the results of those derivatives. This process can be viewed

as a sort of lazy computation and results in a graph structure

like in Figure 4b.

Like with the derivative, computing nullability must also

deal with cycles in grammars. However, memoization alone

is not sufficient here. A cycle means the derivative of some

node must point to one of its ancestors. With nullability,

though, we must not only compute the nullability of an

ancestor but also inspect its value so we can compute the

nullability of the current node. This turns nullability into

a least fixed point problem over the lattice of booleans.

Might et al. (2011) implement this with a naive algorithm

that initially assumes all nodes are not nullable and then

recomputes the nullability of all nodes reachable from a

particular root node, using the current values for each node.

If, in the process, any nodes are newly discovered to be

nullable, then all reachable nodes are re-traversed and this

process is repeated until there are no more changes.

2.6 Performance

Despite PWD’s simplicity and elegance, Might et al. (2011)

report significant problems with its performance. Firstly,

they compute a worst-case bound of O(22nG2) for a gram-

mar of size G and an input of size n. Despite this, they note

that average parse time seems to be linear in the length of the

input. Unfortunately, even with this apparent linear behavior,

their parser is exceedingly slow. For example, they report

that a 31-line Python file took three minutes to parse! Using

an optimization they call compaction that prunes branches of

the derived grammars as they emerge, they report that execu-

tion time for the 31-line input comes down to two seconds.

Still, this is exceedingly slow for such a small input.

3. Complexity Analysis

Might et al. (2011) report an exponential bound for their

algorithm, but they never show it is a tight bound. On the

contrary, it turns out that PWD can, in fact, be implemented

in cubic time.

As mentioned before, at its core, PWD involves four re-

cursive functions: nullable?, derive, parse-null, and

parse. The nullable? and derive functions implement

δ (L) and Dc (L), respectively; the parse-null function

extracts the final AST; and parse implements the outer loop

over input tokens. In Section 3.1, we observe that the running

times of these functions are bounded by the number of gram-

mar nodes in the initial grammar plus the number of gram-

mar nodes constructed during parsing. Next, in Section 3.2

we discover that the total number of nodes constructed dur-

ing parsing is O
(

Gn3
)

, where G is the size of the initial

grammar and n is the length of the input. How to structure

this part of the proof is the essential insight in our analy-

sis and is based on counting unique names that we assign

to nodes. When combined with the results from Section 3.1,

this then leads to a cubic bound on the total runtime.

Throughout this section, let G be the number of grammar

nodes in the initial grammar, let g be the number of nodes

created during parsing, and let n be the length of the input.

Also, when analyzing a memoized function, we consider the

cost of the check to see if a memoized result exists for a

particular input to be part of the running time of the caller

instead of the callee.

3.1 Total Running Time in Terms of Grammar Nodes

First, consider nullable?, which computes a boolean value

for each parse node in terms of a least fixed point. The im-

plementation by Might et al. (2011) iteratively re-traverses

the grammar until no new nodes can be proven nullable?.

Such an algorithm is quadratic in the number of nodes over

which nullable? is being computed because each traver-

sal might update only one node. However, a more intelligent

algorithm that tracks dependencies between nodes and oper-

ates over the boolean lattice can implement this function in

linear time, as shown in the following lemma.

Lemma 1. The sum of the running times of all invocations

of nullable? is O(G+ g).

Proof. The fixed point to calculate nullable? can be im-

plemented by a data-flow style algorithm (Kildall 1973) that

tracks which nodes need their nullability reconsidered when

a given node is discovered to be nullable. Such an algorithm

is linear in the product of the height of the lattice for the

value stored at each node and the number of direct dependen-

cies between nodes. In this case, the lattice is over booleans

and is of constant height. Since each node directly depends
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on at most two children, the number of dependencies is

bounded by twice the number of nodes ever created.

Next, we have derive. Since derive is memoized, it

is tempting to analyze it in terms of the nodes passed to

it. However, each node may have its derivative taken with

multiple different input tokens. The work done by derive

thus depends on the number of tokens by which each node

is derived, so we can instead simplify things by analyzing

derive in terms of the nodes that it constructs.

Lemma 2. The sum of the running times of all invocations

of derive is O(G+ g).

Proof. Every call to derive that is not cached by memoiza-

tion creates at least one new node and, excluding the cost of

recursive calls, does O(1) work. As a result, the number of

nodes created, g, is at least as great as the amount of work

done. Thus, the work done by all calls to derive is O(g)
plus the work done by nullable?. By Lemma 1, this totals

to O(G+ g).

Next, we have parse-null. For this part of the proof,

we assume that ASTs use ambiguity nodes and a potentially

cyclic graph representation. This is a common and widely

used assumption when analyzing parsing algorithms. For ex-

ample, algorithms like GLR (Lang 1974) and Earley (Ear-

ley 1968, 1970) are considered cubic, but only when making

such assumptions. Without ambiguity nodes, the grammar

S -> S S | a | b has an exponential number of unique

parses for strings of length n that have no repeated substrings

of length greater than log2 n. Many of those parses share

common sub-trees, so it does not take exponential space

when represented with ambiguity nodes. Our implementa-

tion is capable of operating either with or without such a

representation, but the complexity result holds only with the

assumption.

Under these assumptions, parse-null is a simple mem-

oized function over grammar nodes and thus is linear.

Lemma 3. The sum of the running times of all invocations

of parse-null is O(G+ g).

Proof. Every call to parse-null that is not cached by mem-

oization does O (1) work, excluding the cost of recursive

calls. There are at most G+ g such non-cached calls.

Finally, we have the total running time of parse.

Theorem 4. The total running time of parse is O(G+ g).

Proof. The parse function calls derive for each input to-

ken and, at the end, calls parse-null once. By Lemma 2

and Lemma 3, these together total O(G+ g).

3.2 Grammar Nodes in Terms of Input Length

All of the results in Section 3.1 depend on g, the number

of grammar nodes created during parsing. If we look at

the definition of Dc (L) (i.e., derive) in Figure 2, most

of the clauses construct only a single node and use the

children of the input node only once each. When combined

with memoization, for a given input token, these clauses

create at most the same number of nodes as there are in the

grammar for the result of the derivative just before parsing

that input token. On their own, these clauses thus lead to the

construction of only Gn nodes.

However, the clause for a sequence node L1 ◦ L2, when

L1 is nullable, uses L2 twice. This duplication is what led

many to believe PWD was exponential; and indeed, without

memoization, it would be. In order to examine this more

closely, we assign unique names to each node. We choose

these names such that each name is unique to the derivative

of a particular node with respect to a particular token. Thus,

the naming scheme matches the memoization strategy, and

the memoization of derive ensures that two nodes with the

same name are always actually the same node.

Definition 5. We give each node a unique name that is a

string of symbols determined by the following rules.

Rule 5a: Nodes in the initial grammar are given a name

consisting of a single unique symbol distinct from that

of any other node in the grammar.

Rule 5b: When the node passed to derive has the name

w and is a ◦ node containing a nullable left child,

the ∪ node created by derive is given the name w•c
where • is a distinguished symbol that we use for this

purpose and c is the token passed to derive.

Rule 5c: Any other node created by derive is given a

name of the form wc, where w and c are respectively

the name of the node passed to derive and the token

passed to derive.

A ◦ node with a nullable left child has the special case of

Rule 5b because it is the only case where derive produces

more than one node, and we need to give these nodes distinct

names. These resultant nodes are a ∪ node and a ◦ node

that is the left child of the ∪ node. The introduction of the •
symbol in the name of the ∪ node keeps this name distinct

from the name of the ◦ node.

As an example of these rules, Figure 5 shows the nodes

and corresponding names for the nodes created when parsing

the following grammar.

L = (L ◦ L) ∪ c

In this example, c accepts any token; the initial names

are L, M , and N ; and the input is c1c2c3c4. Each node in

Figure 5 is labeled with its name in a subscript, and children

that point to already existing nodes are represented with

a box containing the name of that node. For example, the

root of the first grammar contains the node named L as
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its root, and the node named M in that tree has L as both

its children. The dotted arrows in this diagram show where

concatenation causes duplication. The node M produces

Mc1, Mc1 produces Mc1•c2 and Mc1c2, and so on.

A nice property of these rules can be seen if we consider

node names with their initial unique symbol and any • sym-

bols removed. The remaining symbols are all tokens from

the input. Furthermore, these symbols are added by succes-

sive calls to derive and thus are substrings of the input. This

lets us prove the following lemma.

Lemma 6. The number of strings of symbols consisting

of node names with their initial unique symbols and any •
symbols removed is O

(

n2
)

.

Proof. These strings are all substrings of the input. Flaxman

et al. (2004) count the number of such substrings and show

that, unsurprisingly, it is O
(

n2
)

. At an intuitive level, this is

because the number of positions where these substrings can

start and end in the input are both linear in n.

In Figure 5, this can be seen by the fact that the c1, c2,

c3, and c4 occurring in node names are always in increasing,

consecutive ranges such as c1c2c3 in Mc1c2•c3 or c2c3 in

Nc2c3.

Another nice property of names is that they all contain at

most one occurrence of •. This turns out to be critical. At

an intuitive level, this implies that the ∪ node involved in a

duplication caused by a ◦ node is never involved in another

duplication.

Lemma 7. Each node name contains at most one occur-

rence of the • symbol.

Proof. According to Rule 5b, a • symbol is put in the name

of only those ∪ nodes that come from taking the derivative

of a ◦ node. Further derivatives of these ∪ nodes can produce

only more ∪ nodes, so Rule 5b, which applies only to ◦
nodes, cannot apply to any further derivatives of those ∪
nodes. Thus, once a • symbol is added to a name, another

one cannot be added to the name.

This property can be seen in Figure 5 where no name

contains more than one •, and every node that does contain

• is a ∪ node.

This then implies that every name is either of the form

Nw or Nu•v, where N is the name of an initial grammar

node and both w and uv are substrings of the input. As a

result, we can bound the number of possible names with the

following theorem.

Theorem 8. The total number of nodes constructed during

parsing is O
(

Gn3
)

.

Proof. In a name of the form Nw or Nu•v, the number of

possible symbols for N is the size of the initial grammar, G.

Also, the number of possible words for w or uv is bounded

by the number of unique subwords in the input, which is

O
(

n2
)

. Finally, the number of positions at which • may

occur within those subwords is O(n). The number of unique

names, and consequently the number of nodes created during

parsing, is the product of these: O
(

Gn3
)

.

3.3 Running Time in Terms of Input Length

Finally, we can conclude that the running time of parsing is

cubic in the length of the input.

Theorem 9. The running time of parse is O
(

Gn3
)

.

Proof. Use O
(

Gn3
)

in Theorem 8 for g in Theorem 4.

Note that this analysis does not assume the use of the pro-

cess that Might et al. (2011) call compaction. Nevertheless,

it does hold, in that case, if compaction rules are applied only

when a node is constructed and only locally at the node being

constructed. The extra cost of compaction is thus bounded

by the number of nodes constructed, and compaction only

ever reduces the number of nodes constructed by other parts

of the parser.

4. Improving Performance in Practice

Given that PWD has a cubic running time instead of the ex-

ponential conjectured in Might et al. (2011), the question re-

mains of why their implementation performed so poorly and

whether it can be implemented more efficiently. To inves-

tigate this, we reimplemented PWD from scratch and built

up the implementation one part at a time. We measured the

running time as each part was added and adjusted our imple-

mentation whenever a newly added part significantly slowed

down the implementation. Section 4.1 reports the final per-

formance of the resulting parser. Aside from low-level needs

to choose efficient data structures, we found three major al-

gorithmic improvements, which are discussed in Section 4.2,

Section 4.3, and Section 4.4.

The resulting parser implementation remains rather sim-

ple and easily read. The optimization of the fixed-point

computation for nullable? (Section 4.2) takes 24 lines of

Racket code, including all helpers. Compaction (Section 4.3)

is implemented using smart constructors for each form that

test if they are constructing a form that can be reduced. This

takes 50 lines of code due to each constructor needing to

have a clause for each child constructor with which it could

reduce. Finally, single-entry memoization (Section 4.4) re-

quires changing only the helpers that implement memoiza-

tion, which does not increase the complexity or size of the

resulting code. With all of these optimizations implemented,

the core code is 62 lines of Racket code with an additional

76 lines of code for helpers.

The complete implementation can be downloaded from:

http://www.bitbucket.com/ucombinator/derp-3
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Figure 5. Worst-case behavior of PWD. Nodes are annotated with their names in subscripts.

4.1 Benchmarks

In order to test the performance of our implementation of

PWD, we ran our parser on the files in the Python Standard

Library version 3.4.3 (Python Software Foundation 2015a)

using a grammar derived from the Python 3.4.3 specification

(Python Software Foundation 2015b). The Python Standard

Library includes 663 Python files, which have sizes of up to

26,125 tokens.

We compared our parser against three parsers. The first

one used the original PWD implementation (Might 2013).

The second one used the parser-tools/cfg-parser li-

brary (Parser Tools) that comes with Racket 6.1.1 (Racket).

The third one used Bison version 3.0.2 (Bison).

In order to have a fair comparison against the original

PWD implementation, our parser was written in Racket. For

compatibility with parser-tools/cfg-parser and Bison,

we modified our grammar to use traditional CFG produc-

tions instead of the nested parsing expressions supported by

PWD and used by the Python grammar specification. The

resulting grammar contained 722 productions.

The parser-tools/cfg-parser library uses a variant

of the Earley parsing algorithm (Earley 1968, 1970), so it

may not perform as well as other GLR parsers (Lang 1974).
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Nevertheless, we used it because we were not able to locate

a suitable GLR parser for Racket.

In order to compare against a more practical GLR parser,

we included a Bison-based parser. We ran Bison in GLR

mode, as the grammar resulted in 92 shift/reduce and 4 re-

duce/reduce conflicts. However, as the Bison-based parser

is written in C and the improved PWD parser is written in

Racket, the Bison-based parser has an extra performance

boost that the improved PWD implementation does not have.

We ran the tests with Racket 6.1.1 and GCC 4.9.2 on

a 64-bit, 2.10 GHz Intel Core i3-2310M running Ubuntu

15.04. Programs were limited to 8000 MB of RAM via

ulimit. We tokenized files in advance and loaded those

tokens into memory before benchmarking started, so only

parsing time was measured when benchmarking. For each

file, we computed the average of ten rounds of benchmark-

ing that were run after at least three warm-up rounds. How-

ever, the original PWD was so slow that we could only

do three rounds of benchmarking for that implementation.

Each round parsed the contents of the file multiple times,

so the run time lasted at least one second to avoid issues

with clock quantization. We cleared memoization tables be-

fore the start of each parse. A small number of files ex-

ceeded 8000 MB of RAM when parsed by the original PWD

or parser-tools/cfg-parser and were terminated early.

We omit the results for those parsers with those files. This

did not happen with the improved PWD and Bison, and the

results from those parsers on those files are included. The

final results are presented in Figure 6 and are normalized to

measure parse time per input token.

As reported in Might et al. (2011), PWD appears to run in

linear time, in practice, with a constant time per token. How-

ever, our improved parser runs on average 951 times faster

than that by Might et al. (2011). It even runs 64.6 times faster

than the parser that uses the parser-tools/cfg-parser

library. As expected, our implementation ran slower than the

Bison-based parser, but by only a factor of 25.2. This is quite

good, considering how simple our implementation is and the

differences in the implementations’ languages. We suspect

that further speedups could be achieved with a more efficient

implementation language.

In the remainder of this section, we explain the main high-

level algorithmic techniques we discovered that achieve this

performance.

4.2 Computing Fixed Points

The nullable? function is defined in terms of a least fixed

point. The implementation in Might et al. (2011) computes

this by repeatedly traversing over all grammar nodes. If

the computed nullability of any node changes during that

traversal, all of the nodes are traversed again. This continues

until there are no more changes.

This is a fairly naive method of computing a fixed point

and is quadratic in the number of nodes in the grammar as

each re-traversal may update only one node that then trig-
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Figure 6. Performance of various parsers

gers another re-traversal. A more efficient method uses ideas

from data-flow analysis (Kildall 1973) and tracks which

nodes depend on which others. When the computed nulla-

bility of a node changes, only those nodes that depend on

that node are revisited.

While the tracking of dependencies does incur an over-

head, we can minimize this by tracking dependencies only

after discovering cycles that prevent us from immediately

computing the result. In other cases, we directly compute

nullability with a simple recursive traversal.

We can further improve the performance of nullable?

by distinguishing between nodes that are definitely not nul-

lable and those that are merely assumed to be not nullable

because the fixed point has not yet shown them to be nul-

lable.

Assumed-not-nullable and definitely-not-nullable nodes

behave almost exactly alike except that we may re-traverse

assumed-not-nullable nodes but never re-traverse definitely-

not-nullable nodes. This is because definitely-not-nullable

nodes have their final value, while assumed-not-nullable

nodes might not.

In many types of fixed-point problems, this is not an

important distinction because there is usually no way to

distinguish between these types of nodes. However, when

computing nullability, we can take advantage of this because

the computation of nullability is not done only once. Rather,

it is called multiple times on different nodes by different

executions of derive. Within each of these fixed points,

only nodes reachable from the node passed to the initial call

to nullable? by derive have their nullability computed.

Later calls to nullable? may examine different nodes, but

when they examine nodes already examined in a previous

call to nullable? from derive, they can reuse information
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from that previous call. Specifically, not only are nodes that

are discovered by previous fixed points to be nullable still

nullable, but nodes that are assumed-not-nullable at the end

of a previous fixed-point calculation are now definitely-not-

nullable. This is because the nodes that could cause them to

be nullable are already at a value that is a fixed point and will

not change due to further fixed-point calculations.

We take advantage of this by marking nodes visited by

nullable? with a label that is unique to the call in derive

that started the nullability computation. Then, any nodes still

assumed-not-nullable that are marked with a label from a

previous call are treated as definitely-not-nullable.

The end result of these optimizations is a significant re-

duction in the number of calls to nullable?. In Figure 7,

we plot the number of calls to nullable? in our implemen-

tation relative to that of Might et al. (2011). On average, the

new implementation has only 1.5% of the calls to nullable

as that of Might et al. (2011).

4.3 Compaction

Might et al. (2011) report that a process that they call com-

paction improves the performance of parsing by a factor of

about 90. We found similar results in our implementation,

and the benchmarks in Figure 6 use compaction. However,

we also discovered improvements to this process.

First, we keep the following reduction rules from Might

et al. (2011) with no changes. The first three rules take

advantage of the fact that ∅ is the identity of ∪ and the

annihilator of ◦. The last three rules move the operations

involved in producing an AST out of the way to expose the

underlying grammar nodes.

∅ ∪ p ⇒ p

p ∪ ∅ ⇒ p

∅ ◦ p ⇒ ∅

ǫs ◦ p ⇒ p →֒ λu. (s, u)

ǫs →֒ f ⇒ ǫ(f s)

(p →֒ f) →֒ g ⇒ p →֒ (g ◦ f)

To these rules, we add the following reductions, which

were overlooked in Might et al. (2011).

∅ →֒ f ⇒ ∅

ǫs1 ∪ ǫs2 ⇒ ǫs1∪s2

We also omit the following reduction used by Might et al.

(2011), as it is covered by the reductions for ǫs ◦ p and

(p →֒ f) →֒ g.

(ǫs ◦ p) →֒ f ⇒ p →֒λu.f (u, s)

The reader may notice that these laws are very similar

to the laws for Kleene algebras (Kozen 1994). If we ignore

the generated parse trees and consider only string recogni-

tion, parsing expressions are Kleene algebras. The identi-

ties for compaction have one subtle difference from those
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Figure 7. Number of calls to nullable? in the improved

PWD relative to the original PWD

for Kleene algebras, however. They must preserve the struc-

ture of the resulting parse tree, and several of the identities

insert reductions (→֒) to do this.

4.3.1 Right-hand Children of Sequence Nodes

In our implementation, the following two reductions, which

are used by Might et al. (2011), are not used during parsing.

We omit these reductions because the forms on their left-

hand sides cannot occur during parsing unless the initial

grammar contains them.

p ◦ ǫs ⇒ p →֒ λu. (u, s)

p ◦ ∅ ⇒ ∅

Theorem 10. While parsing, grammar nodes are never of

the form p ◦ ǫs or p ◦ ∅ unless nodes in the initial grammar

are of that same form.

Proof. The derivative process changes only the left-hand

child of a sequence node. Thus, the right-hand child of a

sequence node is always a copy of the right-hand child of a

sequence node from the initial grammar.

We take advantage of this fact by using these reduction

rules on the initial grammar before parsing so that once pars-

ing starts, we never need to check for them again. This avoids

the need to inspect the right-hand children of sequence nodes

during parsing and saves us the cost of any resulting memory

accesses or conditional branching.

4.3.2 Canonicalizing Chains of Sequence Nodes

Consider a grammar fragment, like in Figure 8a, where p1 is

not nullable. When taking the derivative, only the left-hand

children of the sequence nodes are considered. Thus, none
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of p2, · · · , pi−1, pi are inspected by derive, though the se-

quence nodes containing them are traversed. We could avoid

the cost of this traversal if we restructured the grammar like

in Figure 8b where the f ′ function rearranges the pairs in

the resulting parse tree to match the AST produced by Fig-

ure 8a. As a result, derive would traverse only two nodes,

the reduction node and topmost sequence node, instead of

the i nodes in Figure 8a.

We can use compaction to try to optimize Figure 8a into

Figure 8b by adding the following reduction rule, which

implements associativity for sequence nodes.

(p1 ◦ p2) ◦ p3 ⇒ (p1 ◦ (p2 ◦ p3))

→֒ λu. {((t1, t2) , t3) | (t1, (t2, t3)) ∈ u}

However, this is not enough on its own. Depending on the or-

der in which nodes get optimized by this reduction rule, a re-

duction node may be placed between neighboring sequence

nodes that interferes with further applications of this reduc-

tion rule. This can lead to structures like in Figure 9a. In-

deed, our inspection of intermediate grammars during parses

revealed several examples of this.

We resolve this by also adding the following rule that

floats reduction nodes above and out of the way of sequence

nodes.

(p1 →֒ f) ◦ p2 ⇒

(p1 ◦ p2) →֒ λu. {(f {t1} , t2) | (t1, t2) ∈ u}

If we apply this rule for (p1 →֒ f) ◦ p2 to the reduction

nodes generated by applying the rule for (p1 ◦ p2) ◦ p3, then

we get Figure 9b where each f ′

i does the work of fi at the

appropriate point in the AST. If we further use the rule for

(p →֒ f) →֒ g on the stack of reduction nodes in Figure 9b,

we get Figure 8b, which allows derivatives to be computed

efficiently.

Note that there is also a version of this reduction rule for

when a reduction node is the right-hand instead of left-hand

child of a sequence. It is the following.

p1 ◦ (p2 →֒ f) ⇒

(p1 ◦ p2) →֒ λu. {(t1, f {t2}) | (t1, t2) ∈ u}

However, for the same reasons as in Section 4.3.1, we use

this only on the initial grammar and not during parsing.

4.3.3 Avoiding Separate Passes

Might et al. (2011) implement compaction as a separate pass

in between the calls to derive for successive tokens. How-

ever, this means that nodes are traversed twice per token in-

stead of only once. To avoid this overhead, we immediately

compact nodes as they are constructed by derive. This re-

sults in two complications.

The first complication is that we do not want to iterate

these reductions to reach a fixed point. We just do the re-

ductions locally on the grammar node being generated by

◦
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pi−1◦

p2p1

. .
.

(a) Left-associated se-

quence nodes

→֒ f ′

◦

◦

◦

pipi−1

p2

. . .

p1

(b) Right-associated se-

quence nodes

Figure 8. Examples of stacked sequence nodes
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p2→֒ f1
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. .
.
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timization
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...
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Figure 9. Examples of reductions mixed with sequence

nodes

derive. As a result, there may be a few missed opportunities

for applying reductions, but compactions in later derivatives

should handle these.

The second complication is that we must consider how to

compact when derive has followed a cycle in the grammar.

The derive function usually does not need to know any-

thing about the derivatives of the child nodes, which means

that calculating these derivatives can be deferred using the

lazy techniques described in Section 2.5. This poses a prob-

lem with compaction though, as many of the rules require

knowing the structure of the child nodes. Like with the first

complication, we have derive punt on this issue. If inspect-

ing a child would result in a cycle, derive does not attempt
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Figure 10. Percentage of nodes with only one memoization

entry for derive

to compact. This design may miss opportunities to compact,

but it allows us to avoid the cost of a double traversal of the

grammar nodes.

4.4 Hash Tables and Memoization

The implementation in Might et al. (2011) uses hash tables to

memoize nullable?, derive, and parse-null. Function

arguments are looked up in those hash tables to see if a re-

sult has already been computed and, if so, what that result is.

Unfortunately, hash tables can be slow relative to other oper-

ations. For example, in simple micro-benchmarks we found

that that Racket’s implementation of hash tables can be up to

30 times slower than field access. Since memoization-table

access is so central to the memoization process, we want to

avoid this overhead. We do so by storing memoized results

as fields in the nodes for which they apply instead of in hash

tables mapping nodes to memoized results.

This technique works for nullable? and parse-null,

but derive has a complication. The derive function is

memoized over not only the input grammar node but also

the token by which that node is being derived. Thus, for

each grammar node, there may be multiple memoized results

for multiple different tokens. The implementation used by

Might et al. (2011) handles this using nested hash tables. The

outer hash table maps grammar nodes to inner hash tables

that then map tokens to the memoized result of derive.

While we can eliminate the outer hash table by storing the

inner hash tables for derive in a field in individual grammar

nodes, the central importance of derive makes eliminating

both sorts of hash table desirable.

These inner hash tables are usually small and often con-

tain only a single entry. Figure 10 shows the percentage of

inner hash tables in the original PWD implementation that
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Figure 11. Percentage of uncached calls to derive with

single entry versus full hash table

have only a single entry when parsing files from the Python

Standard Library. Though we note the grouping into two

populations, what interests us is that so many have only one

entry. We can optimize for the single-entry case by adding

two fields to each grammar node that behave like the key

and value of a hash table that can store only one entry, and

when a second entry is added, evicts the old entry.

This makes our memoization forgetful, and it may fail to

notice when a token is reused multiple times in the input.

However, the complexity results in Section 3 still hold, as

they already assume every token is unique. Cycles in the

grammar still require that we not forget the memoizations

of derive on the current input token, but that requires only

the single entry we store in each node.

We discovered that, in practice, the number of extra calls

to derive that are recomputed as a result of this is relatively

small. Figure 11 shows the number of calls to derive in

our implementation when using the single-entry technique

relative to the number when using full hash tables. While

there are more uncached calls when using the single-entry

technique, the increase is on average only 4.2% and never

more than 4.8%. We also experimented with larger caches

(e.g., double- or triple-entry caches) to see if the extra cache

hits outweighed the extra computation cost. Early results

were not promising, however, so we abandoned them in

favor of a single-entry cache.

We measured the performance impact of this by run-

ning our implementation both with the single-entry tech-

nique and with full hash tables. The relative speedup of us-

ing the single-entry technique is shown in Figure 12. The

extra calls to derive partially cancel out the performance

improvements from avoiding the inner hash tables, but on

average the performance still speeds up by a factor of 2.04.
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5. Conclusion

In this paper, we have discovered that the believed poor per-

formance of PWD both in theory and practice is not inher-

ent to PWD. Rather, its worst-case performance at O
(

n3
)

is comparable to other full CFG parsers. Furthermore, with

only a few algorithmic tweaks, the unacceptably slow per-

formance of the implementation in Might et al. (2011) can

be sped up by a factor of 951 to be on par with other parsing

frameworks.
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