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Fixed-Point-Oriented Programming (FPOP) is an emerging paradigm designed to streamline the implementation of problems involving
self-referential computations. These include graph algorithms, static analysis, parsing, and distributed computing—domains that
traditionally require complex and tricky-to-implement work-queue algorithms. Existing programming paradigms lack direct support
for these inherently fixed-point computations, leading to inefficient and error-prone implementations.

This white paper explores the potential of the FPOP paradigm, which offers a high-level abstraction that enables concise and
expressive problem formulations. By leveraging structured inference rules and user-directed optimizations, FPOP allows developers to
write declarative specifications while the compiler ensures efficient execution. It not only reduces implementation complexity for
programmers but also enhances adaptability, making it easier for programmers to explore alternative solutions and optimizations
without modifying the core logic of their program.

We demonstrate how FPOP simplifies algorithm implementation, improves maintainability, and enables rapid prototyping by
allowing problems to be clearly and concisely expressed. For example, the graph distance problem can be expressed in only two
executable lines of code with FPOP, while it takes an order of magnitude more code in other paradigms. By bridging the gap between
theoretical fixed-point formulations and practical implementations, we aim to foster further research and adoption of this paradigm.

1 Introduction

Fixed-Point-Oriented Programming (FPOP) is an emerging programming paradigm that could revolutionize how
developers write code for problems involving cycles or other types of self-reference and bring an order of magnitude
improvement in programmer productivity. Examples of such problems include parsing, static analysis, type-checking,
graph algorithms, automata minimization, and distributed computing, and we illustrate some of these in Section 2.
However, this paradigm is underexplored, leaving it ripe for rapid advancements and achievements.

As an example of the mismatch between existing paradigms and these types of problems, consider that while
array-based problems are naturally solved by iteration and tree-based problems are naturally solved by recursion, what
is the natural paradigm for graph-based problems? The order in which to traverse the vertices of the graph may not be a
natural fit for either array iteration or tree recursion. For example, some vertices might need to be visited multiple times,
and the data associated with them (e.g., graph distances) might need to be refined and improved multiple times (e.g.,
updated with shorter distances) with dynamically determined calculation orders and potentially cyclic dependencies.

It turns out that the natural paradigm for these is the calculation of least fixed points of monotonic transfer
functions over lattices. These are implemented by what are called work-queue or work-list algorithms. Unfortunately,
implementing work-queue algorithms in traditional languages is often tedious and results in complex and brittle
programs. Programmers are forced to write long and complicated programs, only to discover large changes need to
be made when the specification evolves or optimizations are desired. The result of this tedium is a high barrier to
implementing, exploring, and optimizing these algorithms.

Given these challenges, an alternative approach is to rethink how we express computation, shifting from imperative
work-list management to a more declarative, fixed-point-driven paradigm. Rather than manually orchestrating iteration
order and updates, this perspective treats problem-solving as defining equations over lattices, where solutions emerge
naturally through fixed-point computations.
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2 Examples

To better illustrate the usefulness of FPOP, we offer practical examples for graph distance, automata minimization, and
parsing. We also show the equivalent Haskell implementation of the first example to show how much effort FPOP saves
the programmer, but for the sake of brevity, we omit this for the other examples and also elide some less important
declarations.1

2.1 Graph Distance

This example computes the shortest path between a starting vertex and a destination vertex in a graph with edges of
various distances. Traditionally, a programmer would implement Dijkstra’s algorithm [Dijkstra 1959], such as the below
written in Haskell.

dijkstra :: Map Vertex (Set (Vertex, Dist))

→ Map Vertex Dist

→ PriorityQueue (Dist, Vertex)

→ Map Vertex Dist

dijkstra edges dists work =

case popQueue work of

Nothing → dists -- all work done so we have reached the fixed-point

Just ((d1, v1), work') →
let oldD1 = Map.lookup dists v1 in

if oldD1 ≤ d1

then dijkstra edges dists work'

else let dists' = Map.put dists v1 d1

addedWork = map (𝜆(v2, d2) → (d1 + d2, v2)) (Map.lookup edges v1)

work'' = PriorityQueue.merge work' addedWork

in dijkstra edges dists' work''

There are several things of note. First, readers unfamiliar with Dijkstra’s algorithm may have difficulty understanding
this implementation because the boilerplate involved in the work-queue style of programming dominates the code and
obscures both the purpose of the code (computing graph distances) and the key algorithmic optimization (that elements
are pulled from the queue based on distance). Second, this implementation is brittle. Several design choices were made
in this implementation (e.g., the representation of edges as a map between a vertex and a set of vertex-distance pairs),
and even minor changes to these choices require significant changes throughout the code. Third, avenues for further
optimization are opaque. Aside from minor optimizations based on Haskell’s semantics, optimizations at a higher,
algorithm level may require major changes to the code. As a result, exploring algorithm-level optimizations is difficult
and time-consuming.

Contrast this with implementing Dijkstra’s algorithm using FPOP. The user first declares relations, describing how
things relate to each other. For example, the edge relation gives the distance between two vertices, and the distTo
1Readers familiar with Datalog [Gallaire and Minker 1977] might note some similarities to our language. However, Datalog restricts relations to discrete
lattices or power sets of Cartesian products of values. This limits Datalog’s suitability for relations involving non-discrete lattices, such as the distances in
the distTo relation used in the graph distance problem. We further discuss additional potential enhancements to FPOP that Datalog does not possess in
Section 5.
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relation gives an upper bound on the distance to a vertex from the start vertex. These are declared with the following
lines.2

-- Note that these relations use mixfix notation

relation edge • • = •: Vertex, Vertex, Dist -- distance of an edge

relation distTo • ≤ •: Vertex, Dist -- upper bound on distance to a vertex

Next, the user defines rules for inferring new instances of those relations (i.e., facts). For example, the distance from
the starting node to itself is zero (the init inference rule), and an edge going to a vertex places an upper bound on the
distance to that vertex (the addDist inference rule). Again, these can be concisely given with the following lines.

rule init: distTo start ≤ 0

rule addDist: distTo v1 ≤ d1, edge v1 v2 = d2, d1 + d2 ≤ d ⇒ distTo v2 ≤ d

With just these two executable lines of code, we have defined graph distance, and this is sufficient for the language to
produce a runnable implementation. To get the asymptotic performance of Dijkstra’s algorithm, we just have to ensure
that when multiple instances of the addDist rule can be applied, the program always applies the one involving the
shorter distance first. Fortunately, this optimization can be implemented by the compiler in a relatively straightforward
analysis based on dependencies between rules and which rule applications can make other applications obsolete (e.g.,
tighter bounds obsolete looser bounds). However, even in the absence of such an automatic optimization, users can
easily provide their own directives specifying this as follows.

order: d11 ≤ d12 ⇒ addDist { d1 = d11 } ≤ addDist { d1 = d12 }

And that is all! With just a few lines of code, Dijkstra’s algorithm is fully implemented!
Also, because the program is so short, amending its design or expanding the problem domain is straightforward.

While one could use an existing implementation of Dijkstra’s algorithm from a library, expressing it so easily opens
opportunities for modification. For example, in road mapping, one may want alternate routes but be unsure how best to
produce alternate paths that are different enough from the primary path without being too much longer. Expressing the
problem so simply makes it easy to try modifications and make adjustments until one finds a method that produces
good alternate routes.

2.2 Finite-State Automata Minimization

Automata minimization involves several subproblems, including the following examples of what states are reachable,
what states reject or accept all strings, and what states are distinguishable.

We define our automata in terms of the following two relations:

relation edge: Character, State, State -- the character goes from state to state

relation accepts: State -- the state is an accepting state

Reachability is then defined with the following two rules.

rule: isStart s ⇒ reaches s -- the start state is reachable

rule: reaches s1, edge c s1 s2 ⇒ reaches s2 -- states from reachable states are reachable

2In a practical language, terms such as relation and order can be condensed into rel and ord. However, here, we leave it as relation for clarity.
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Which states reject all strings (i.e., are “dead” states) can be similarly defined as follows. Note that since this property
is co-inductive instead of inductive (i.e., it is an “optimistic” property), we define its negation, notRejectsAll. The
definition for notAcceptsAll is similar.

rule: accepts s ⇒ notRejectsAll s -- an accepting state does not reject all

rule: edge c s1 s2, notRejectsAll s2

⇒ notAcceptsAll s1 -- a state (s1) going to a state (s2) that does not reject all,

-- does not itself reject all

Finally, we can determine which states are distinguishable using essentially Hopcroft’s algorithm [Hopcroft 1971].
In other words, accepting and rejecting states are distinguishable, and states that go with the same character to
distinguishable states are distinguishable:

relation distinguished: Partition(State)

rule: accepts s, notAccepts s' ⇒ distinguished s s'

rule: edge c s1 s2, edge c s1' s2', distinguished s2 s2' ⇒ distinguished s1 s1'

Note that while the other relations in this example are defined over a power-set lattice (i.e., for what arguments a
relation is true), distinguished is defined over a partition lattice. This represents the partition in linear space instead
of the quadratic space taken by a set of pairs of distinguishable states, as one would do in Datalog.

Even generalizing from string automata to tree automata is easy, even though tree automata are usually more
complicated to implement. For example, notRejectsAll swaps out the edge relation from a string automaton with
hyperEdge representing a production in a tree automaton, as in the following.

rule: hyperEdge s1 c ss, forall s in ss. notRejectsAll s ⇒ notRejectsAll s1

2.3 Parsing

Many variants of the parsing problem are easily defined in this language. Context-free parsing is defined with the
following relation and rules for a grammar in Chomsky normal form [Chomsky 1959].

relation parse: Symbol, Pos, Pos -- the symbol parses the input between the positions

rule: concatenationProduction nt a b, parse a i j, parse b j k ⇒ parse nt i k

rule: epsilonProduction nt ⇒ parse nt i i

More complex operators such as lookahead can easily be added:

rule: lookaheadProduction nt a, parse a i j ⇒ parse nt i i

Even operators considered exotic are no trouble, such as Boolean grammar intersection [Okhotin 2004], where a symbol
parses only if two other symbols parse the same region of a string:

rule: andProduction nt a b, parse a i j, parse b i j ⇒ parse nt i j

Adding a weight to compute the cost of the “best” parse out of multiple alternatives requires only adding a parameter
to the parse relation:
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relation parse • • • ≤ • : Symbol, Pos, Pos, Weight

rule: concatenationProduction nt a b w, parse a i j ≤ w1, parse b j k ≤ w2

⇒ parse nt i k ≤ (w + w1 + w2)

rule: epsilonProduction nt w ⇒ parse nt i i ≤ w

In addition, different parse algorithms (Early, CYK, LR, etc.) frequently amount to different scheduling strategies and
dependency analyses for when to apply different inference rules. Also, many analyses of grammars (e.g., emptiness and
nullability) are easily expressed this way. Even LR parser generation can be expressed in only a few inference rules (i.e.,
state exploration and item-set closure).

2.4 Discussion

When written in fixed-point form, these example problems seem almost trivial, but from experience, each one of these
problems, when written by hand, is significantly more complicated to implement, debug, optimize, maintain, and have
confidence in its correctness. The almost-trivial ease with which these examples are expressed in FPOP highlights the
gains it can bring to expressiveness and flexibility.

In addition to the examples given here, fixed-point-oriented problems occur in many domains of interest to academia
and industry. For example:

• Static analysis, used in formal verification and proof systems, relies on the identification of fixed points to
determine the behavior of programs and is widely used to verify the correctness, safety, and security of software.

• Parallel and distributed computing can take advantage of how fixed-point computations can be split,
computed in parallel, and then joined. For example, conflict-free replicated data types (CRDTs) operate on
lattices, with updates being joins on those lattices.

• Rendering and layout algorithms such as Knuth-Plass line breaking [Knuth and Plass 1981] are well suited
to being described in terms of fixed points.

• Graph algorithms frequently use fixed points. In addition to the already mentioned Dijkstra’s algorithm,
examples include strongly connected components [Tarjan 1972], graph dominators [Lengauer and Tarjan 1979],
and finding maximum flows [Ford and Fulkerson 1956].

FPOP expresses complex problems concisely, avoids the repetitive boilerplate code of traditional work queues (which
in turn reduces the likelihood of bugs), and simplifies problem definition by focusing on high-level abstractions rather
than low-level implementation details. This reduces implementation time and frees programmers to more easily explore
the design space of their code.

These problems benefit from a high-level language for concisely and easily expressing fixed-point problems that
generates programs from users’ specifications and exposes avenues for optimization. As such, this paradigm fills in a gap
in programming language theory and enables the field to grow more rapidly by accelerating programmer productivity
and researcher exploration.

2.5 Future Directions

Though some work exists on FPOP [Arntzenius and Krishnaswami 2016; Madsen et al. 2016], it is an underexplored
paradigm that our group believes is a fertile area for research. To that end, our group has begun exploration in this
paradigm of fixed-point computation and its supporting theories [Blanchette and Adams 2023]. We aim to develop a
fixed-point-oriented language, investigate how a programming language centered around fixed-point principles could
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potentially be structured and implemented, and discover what natural patterns would arise through programming in a
fixed-point-oriented manner.

Notably, fixed-point algorithms typically have flexibility in their calculation order and multiple ways of representing
intermediate computations. Thus, our language will let programmers write high-level code that performs well through
user-guided optimizations such as solving order, indexing, and fact representation. Optimization directives will allow
programmers to modify the solution strategy and problem representation without having to modify the inference rules.
This allows programmers to rapidly prototype and test inference rules, then later optimize their code without fear
of losing correctness since the inference rules remain largely untouched. This mitigates the problem of traditional
work-queue code often requiring extensive modifications to achieve optimized performance.

In addition, the high level of abstraction at which FPOP code is written encodes the intent of the programmer more
directly than traditional work queue algorithms, which presents an opportunity for the compiler to apply algorithm-level
optimizations.

Finally, we aim for FPOP’s adoption by the general programming community to solve fixed-point-oriented problems,
similar to how parser generators, SMT solvers, and SQL are called from general-purpose languages for domain-specific
tasks. This allows us to develop features and syntax tailored towards fixed-point computations while only requiring the
parts of the applications suited for fixed points to be written in the fixed-point language.

3 Background Theory

In this section, we provide background information for readers to understand our characterization of the earlier problems
as fixed points and to understand our approach and its feasibility. For brevity, we gloss over some technicalities.

3.1 Definitions

3.1.1 Partial Orders and Lattices. A partial order (⊑) on a set 𝐿 is a relation that is reflexive (𝑥 ⊑ 𝑥), transitive (𝑥 ⊑ 𝑦

and 𝑦 ⊑ 𝑧 implies 𝑥 ⊑ 𝑧), and antisymmetric (𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑥 implies 𝑥 = 𝑦). The word partial indicates that not every
pair of elements is necessarily ordered. A partially ordered set, or poset, is then the pair (𝐿, ⊑). Examples include power
sets, numbers (e.g., for graph distance), class hierarchies, and subtyping.

Within a poset, the join operation (𝑥 ⊔ 𝑦) gives the smallest 𝑧 such that 𝑥 ⊑ 𝑧 and 𝑦 ⊑ 𝑧 (i.e., the least upper bound
of 𝑥 and 𝑦). The meet operation (𝑥 ⊓ 𝑦) gives the largest 𝑧 such that 𝑧 ⊑ 𝑥 and 𝑧 ⊑ 𝑦 (i.e., the greatest lower bound of
𝑥 and 𝑦). A poset is a lattice if every pair of elements has both a join and a meet. Additionally, if a poset has a single
greatest element, we call that its top (⊤), and if it has a single least element, we call that its bottom (⊥).

3.1.2 Monotonicity and Fixed Points. A function 𝑓 : 𝐿 → 𝑀 between posets (𝐿, ⊑𝐿) and (𝑀, ⊑𝑀 ) is monotonic if it is
order preserving (𝑥 ⊑𝐿 𝑦 ⇒ 𝑓 (𝑥) ⊑𝑀 𝑓 (𝑦)). A fixed point of a function 𝑓 is an 𝑥 such that 𝑓 (𝑥) = 𝑥 . In other words,
some 𝑥 such that applying 𝑓 to 𝑥 yields 𝑥 itself.

3.1.3 Kleene’s Fixed-Point Theorem. Kleene’s fixed-point theorem states that if (𝐿, ⊑) is a poset and 𝑓 is monotonic,
then under appropriate conditions, one can compute the least fixed point (lfp) of 𝑓 by repeatedly iterating 𝑓 over ⊥
until a fixed point is found. Greater elements in the lattice are thought of as subsuming and obsoleting lesser elements,
and Kleene iteration “climbs” the lattice until a fixed point is found. Everything can also be dualized where the greatest
fixed point is sought, lesser elements obsolete greater elements, and iteration “descends” the lattice starting from ⊤ to
find a fixed point. Different research areas and communities adopt different conventions in this regard.
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3.2 Applicability of Theory to Practice

Kleene’s fixed-point theorem shows that iteratively inferring new relation instances from known relation instances leads
to finding a fixed point. In our application, the domain 𝐿 represents the lattice over which relations operate, 𝑥 represents
relation instances that hold, the partial order ⊑ represents when one relation instance subsumes or obsoletes another,
and 𝑓 computes the consequences of the inference rules based on the existing relations. Combined with optimizations
to apply only rules affected by newly learned relation instances, this leads to the classic work-queue algorithm.

Framing problems in this way is not just a theoretical contrivance. Many algorithms in these domains are already
framed in terms of fixed-point computations. To illustrate how Dijkstra’s algorithm can be seen as a fixed-point problem,
consider a directed graph 𝐺 = (𝑉 , 𝐸), where 𝐴 is the start vertex.

In order to represent distances, we define a partially ordered set 𝐷 = N ∪ {∞}, where numerically smaller (and thus
better) distances are greater in the partial order and ∞ represents there being no path. Then, to represent the distances
to all vertices, we define a partially ordered set D = 𝑉 → 𝐷 that maps each vertex to the shortest known distance
from A to that vertex. The partial order ⊑ on D is such that for any 𝑑1, 𝑑2 ∈ D, 𝑑1 ⊑ 𝑑2 if and only if for all 𝑣 ∈ 𝑉 ,
𝑑1 (𝑣) ⊑ 𝑑2 (𝑣). That is, 𝑑1 ⊑ 𝑑2 whenever 𝑑2 provides a more refined (i.e., numerically less than or equal) estimate of
the shortest distances. The least element (⊥) of D maps all vertices to∞. This represents where no shortest paths are
known.

Given this structure, Dijkstra’s algorithm can be interpreted as an iterative process for computing the least fixed
point of a monotonic function 𝑓 : D → D that updates distance estimates according to the shortest paths discovered
so far, where 𝑓 is

𝑓 (𝑑) (𝑣) = 𝑑 (𝑣) ⊔
⊔

(𝑢,𝑣) ∈𝐸
(𝑑 (𝑢) +𝑤 (𝑢, 𝑣))

where 𝐸 is the set of all edges and𝑤 (𝑢, 𝑣) is the distance of the edge (𝑢, 𝑣). This function refines the current estimate by
ensuring that each distance satisfies the triangle inequality with respect to its neighboring nodes.

Since 𝑓 is monotonic with respect to ⊑, the sequence ⊥, 𝑓 (⊥), 𝑓 2 (⊥), · · · forms an ascending chain inD. By Kleene’s
fixed-point theorem, this sequence converges to the least fixed point 𝑑∗, which represents the shortest path distances
from 𝑠 to all other nodes. The function 𝑓 iteratively refines the distance estimates, effectively “climbing" the lattice until
it stabilizes at the least fixed point, which at that point would contain the shortest distances to all nodes.

Apart from Dijkstra’s algorithm, there are many other examples, such as parsing, static analysis, and other graph
algorithms.

Parsing. Parsing context-free grammars is naturally a fixed-point computation based on inference rules. Any time a
symbol parses a region of a string, any production that uses that symbol might be able to parse from it. For instance,
Earley’s parser [Earley 1970] iterates through parse states, adding new states as it goes until no new states are introduced,
at which point parsing reaches a fixed point, the parsing is complete, and all possible derivations have been considered.
Similarly, the CYK (Cocke-Younger-Kasami) algorithm [Cocke and Schwarts 1970; Kasami 1965; Sakai 1961; Younger
1967] constructs a parse table by systematically combining smaller substrings into larger ones according to grammar
rules. The table-building process relies on previously filled entries, and the algorithm iterates until the table reaches
a stable state—a fixed point where no further updates are necessary. In attribute grammars, attribute evaluation
involves computing attributes for grammar symbols based on semantic rules, often through iterative processes. These
computations converge to a fixed point when all attribute values stabilize, ensuring that all dependencies are resolved
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and no further changes are needed. Even the generation of parsers, such as in LR parsing, is based on inferring new
states from known states until the states of the push-down machine are fully elaborated.

Static Analysis. Static analysis tasks, such as type inference, control-flow analysis, and data-flow analysis, are
frequently framed in terms of fixed points. For instance, in data-flow analysis, the objective is to determine how values
propagate through a program. This starts with initial assumptions (e.g., empty sets or default values) and iteratively
applies transfer functions across the control flow graph until the results stabilize and no longer change between
iterations (i.e., we have reached a fixed point). This stable state represents the final data-flow information. Similarly, type
inference often involves deducing types through iterative constraint solving that converges to a fixed point where type
assignments stabilize and do not change further. Abstract interpretation uses fixed-point computations by approximating
program semantics over an abstract domain. Here, iterative application of abstract operations continues until a stable
approximation—a fixed point—is achieved. Verifying program properties often involves iterating to compute invariants
or properties until they stabilize, ensuring that certain conditions hold across all possible executions.

Graph Algorithms. Fixed points are widely used in graph algorithms. In addition to the already mentioned Dijkstra’s
algorithm, the Bellman-Ford algorithm [Bellman 1958; Ford 1956] for finding shortest paths involves iteratively relaxing
edges to update path estimates. This continues until no further improvements can be made. The algorithms for strongly
connected components [Tarjan 1972], graph dominators [Lengauer and Tarjan 1979], and finding maximum flows [Ford
and Fulkerson 1956] also involve iterative methods that converge to fixed points.

4 Approach

4.1 Language Design

At a high level, an FPOP language can be structured around types, lattices, relations, rules, and optimization directives.
We describe each of these in turn, drawing from the examples shown earlier.

• Types: Types define the values that fixed-point computations operate over and are used to define lattices. These
can be natively defined within the language, but because our language is a solver, we plan to allow programmers
to refer to “foreign” types that are defined in the language calling our solver. This eases the marshaling of data
between the calling program and the solver.

• Lattices: Lattices add orders to types and allow the arguments to different instances of a relation to be combined.
For example, in graph distance, we keep only the shortest distance, so we combine multiple distances to the
same vertex by keeping only the shortest distance. Lattices can be defined by directly defining the ordering,
join, and meet operators or by several operators, such as “reversing” a lattice or taking the power set of a type.
Note that a type can have multiple lattices (e.g., numbers have multiple orders that can be defined).

• Relations: Relations define relationships between different values. These enable the expression of complex
dependencies and constraints that formulate and solve fixed-point problems.

• Rules: Inference rules are the core construct that drives the computation forward. Rules infer new relation
instances from known relation instances and thus define how new information is inferred from existing
information.

• Queries: Queries are interfaces that external code can use to ask about the relation instances inferred by the
solver.
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• Optimization Directives: The language exposes optimization directives that provide guidance to various
aspects of the solver (e.g., in Dijkstra’s algorithm, the order in which to apply instances of the distTo rule).
Ideally, the compiler can analyze the relations and rules to automatically determine the optimal rule order and
relation representation, but for early prototypes of the language or in cases that are particularly complicated,
this allows the user the control needed for algorithmic efficiency.

4.2 Architecture

The compiler architecture can be viewed from several perspectives. First is the compilation pipeline and how one would
integrate it into a calling application. Second is the API that the calling application would use to interface with the
solver. Third is the internal algorithm that the solver uses.

4.2.1 Compilation Pipeline. As shown in Figure 1, the compilation process starts with fixed-point source code written
by the user, containing lattices, relations, rules, and so on. A dependency analysis determines the dependencies between
rules. This is used by the downstream optimizations, which include determining relation representations, ordering
which rules should be applied before other rules (scheduling), selecting intermediate caches to more efficiently look up
relation instances (indexing), and many other optimizations. Once all the optimizations have run, the code generator
emits optimized Haskell code that implements the problem specified in the fixed-point source code. This code can then
be imported by application code and both be compiled into the final executable program.

Dependency 
Analysis

Optimizations:
Representation        
Scheduling              
Indexing
Other

Code 
Generation

Generated 
Code 

Application 
Code

Compiler 
(e.g., 
GHC)

Executable 
Program

import

Fixed-Point Source:              
Relations, Rules, Queries, 
Optimization Directives,  ...   

Fig. 1. The compilation pipeline

We also intend to develop a Template Haskell [Sheard and Jones 2002] wrapper that simplifies this process, so users
can write fixed-point source code directly within a Template Haskell quasi-quote in their application code. This makes
the build process more lightweight for developers.

4.2.2 Usage by Calling Code. The code generated by the code generator contains a module exporting a solver over the
relations and rules declared in the fixed-point source code. Application code uses this solver using four types of API
functions: initialization, insertion of relation instances, solving, and querying. This is illustrated in Figure 2.

After initialization, inserting relation instances is how a programmer specifies a particular problem instance to be
solved. For example, with graph distance, one adds instances for the edge relation to specify the graph to be solved.
Once all appropriate instances are added, the solving function is called, which kicks off the work-queue-based solving
algorithm. Once the work-queue algorithm reaches a fixed point, the user can then query the resulting relation instances
that were discovered.
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Initialize Insert Relation 
Instance

Solve with Selected Rules 
(i.e., Compute Closure) Query

Fig. 2. External interface to the solver

Because of the lattice structure, one can also repeat this process by adding new relation instances even after the
solver has found a fixed point and then invoke the solver again. These subsequent runs of the solver automatically
reuse results from previous runs to efficiently compute the new solution. For example, after computing graph distances
and inspecting the result, one could re-run the solver with new edges added, and only the distances affected by those
new edges would require re-computation.

4.2.3 Internal Solver Process. Within the solver, multiple work threads run in parallel, each of which runs a main loop
based on the classic work-queue/work-list algorithm. They apply rules based on known relation instances to infer new
relation instances, and they interact with three primary types of shared data: relation instances, the work queue, and
dependency information. These are shown in Figure 3.

Fact DatabaseWork 
Queue

Dependency 
Tracker

Work 
Thread. . .

Work 
Thread

Work 
Thread

Fig. 3. Internal process when the solver is run

The facts database tracks relation instances inserted by the calling application and what is inferred by the solver.
Facts have a lattice structure based on the lattices used by relations, so we can optimize how they are stored. For
example, if 𝑥 ⊑ 𝑦, then the relation instance for 𝑦 subsumes that of 𝑥 , and 𝑥 does not need to be stored (e.g., in graph
distance, shorter path distances subsume longer path distances). As another example, if the lattice is over a partition
(e.g., in automata minimization), then there are more efficient ways to store things than pairs of dis-equalities. At the
same time, these facts must be stored in a way that allows efficient lookup when applying a rule (e.g., when the addDist
rule uses distTo and edge as premises). This can be accomplished by storing indexes that are updated as new instances
are learned, but at the same time, there is a trade-off between the cost to update these indexes and their speedups to
lookup. There are many optimization opportunities in this area, so we anticipate this to be a fertile area of research.
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The work queue is a priority queue that tracks new relation instances to be added to the database but whose
consequences have not been applied in terms of rules that could be applied as a result of them being added to the
database. They represent work in the form of rules that need to be further applied, and the main loop of the solver
amounts to taking tasks from this work queue and applying the rules that are consequences of those tasks. When
these rules are applied, they create more relation instances that go back into the work queue until no new instances
are generated by rules and the work queue empties. At that point, the solver has found a fixed point. The order in
which to pull elements from this queue can affect performance. For example, Dijkstra’s algorithm relies on shorter
distances in the queue being processed before longer distances so that the number of times each vertex is processed is
minimized. This is another area where we foresee fertile areas for research and opportunities for optimization, both
from optimization directives and automated program analyses.

The dependency tracker improves performance by tracking the dynamic dependencies between rules and relations.
This allows the solver to quickly identify what rules to apply when and how updating certain relations will affect other
relations.

Each work thread repeatedly pulls tasks from the work queue in the form of relation instances, adds this relation to
the database, and checks whether doing so changes the database. For example, due to the lattice structure, adding a
longer distance to a vertex in the graph distance problem does not change the database. If it does change the database,
then it computes what rules apply because of that update. The resulting relation instances are then put in the queue
to be subsequently processed. Because of the lattice structures of the fact database, multiple threads can operate
simultaneously, which provides an exceptionally easy programming model for parallelism.

5 Related Work

We have explained the advantages of FPOP relative to traditional iteration and recursion, but we also wish to briefly
discuss the current landscape for the paradigm of fixed-point-oriented programming languages, including Datalog [Gal-
laire and Minker 1977], Soufflé [Jordan et al. 2016; Scholz et al. 2016], constraint logic programming (CLP) [Jaffar and
Maher 1994], Flix [Madsen et al. 2016], and Datafun [Arntzenius and Krishnaswami 2016].

Datalog is a well-established language that supports bottom-up inference of relations, treating relations as sets
of tuples. However, its set-based nature means that multiple instances of a relation have no inherent connection to
each other. For example, Datalog does not take advantage of the fact that a tighter bound on a distance subsumes a
looser bound, which limits its applicability to many fixed-point problems. Constraint Datalog extends the traditional
Datalog model by incorporating constraints, which allows for more expressive problem specifications, but it still does
not fundamentally address algorithmic optimizations for fixed-point problems.

Flix and Datafun are research languages that extend Datalog’s capabilities by supporting lattice-structured relations.
These languages incorporate elements of functional programming and type systems to facilitate reasoning about recur-
sive and fixed-point computations. Rather than serving as isolated solvers, they provide general-purpose programming
capabilities within the fixed-point paradigm.

Our proposed approach aligns with this broader research direction by focusing on FPOP as a dedicated solver within
this paradigm. By taking this approach, we can tailor our language to more directly serve FPOP-specific requirements
while allowing developers to integrate our solver into their existing workflows without requiring them to port their
entire application to our language. Additionally, while these languages have explored early work on FPOP, there is still
significant design space left to be explored. Our approach contributes to this space by emphasizing algorithm-level
optimizations, providing users with the flexibility to experiment with different implementations through optimization
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directives without modifying the problem specification. Our group also aims to extend the types of lattices and relations
that can be expressed. For example, Flix only allows for one lattice argument in a relation, while we allow an arbitrary
number of lattice arguments.

6 Conclusion

FPOP represents an exciting step forward in programming paradigms, providing a structured and expressive framework
for tackling inherently recursive and self-referential problems. By abstracting fixed-point computations into high-level
inference rules and allowing for algorithm-level optimizations, FPOP empowers developers to write clear, maintainable,
and performant code.

The challenges associated with implementing work-queue algorithms manually, such as verbosity, brittleness, and
difficulty in optimization, are greatly alleviated through FPOP’s declarative approach. This not only benefits research in
programming languages but also has practical implications for a wide range of domains, including formal verification,
graph processing, parsing, and distributed computing.

We encourage further research and development in the space of fixed-point-oriented programming, exploring
additional optimizations, expanding upon the expressiveness of existing fixed-point-oriented programming languages,
and integrating with general-purpose programming languages to increase mainstream adoption. By advancing this
paradigm, we can make fixed-point computations more accessible, robust, and efficient for both researchers and
practitioners.
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