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Abstract

Several popular languages, such as Haskell, Python, and F#, use
the indentation and layout of code as part of their syntax. Be-
cause context-free grammars cannot express the rules of indenta-
tion, parsers for these languages currently use ad hoc techniques
to handle layout. These techniques tend to be low-level and opera-
tional in nature and forgo the advantages of more declarative spec-
ifications like context-free grammars. For example, they are often
coded by hand instead of being generated by a parser generator.

This paper presents a simple extension to context-free grammars
that can express these layout rules, and derives GLR and LR(k)
algorithms for parsing these grammars. These grammars are easy to
write and can be parsed efficiently. Examples for several languages
are presented, as are benchmarks showing the practical efficiency
of these algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Syntax; D.3.4 [Pro-
gramming Languages]: Processors—Parsing; F.4.2 [Mathemati-
cal Logic and Formal Languages]: Grammars and Other Rewriting
Systems—Parsing

General Terms Algorithms, Languages

Keywords Parsing, Indentation, Offside rule

1. Introduction

Languages such as Haskell [Marlow (ed.) 2010] and Python
[Python] use the indentation of code to delimit various grammat-
ical forms. In Haskell, the contents of a let, where, do, or case
expression can be indented relative to the surrounding code instead
of being explicitly delimited by curly braces. In Python, the body
of a multi-line function or compound statement must be indented
relative to the surrounding code; there is no alternative, explicitly-
delimited syntax. For example, in Haskell one may write:

mapAccumR f = loop
where loop acc (x:xs) = (acc’’, x’ : xs’)

where (acc’’, x’) = f acc’ x
(acc’, xs’) = loop acc xs

loop acc [] = (acc, [])

Copyright c© ACM, 2013. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The defini-
tive version was published in POPL ’13: Proceedings of the 40th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, (January
2013), http://doi.acm.org/10.1145/[to be supplied].

POPL ’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $15.00

The indentation of the bindings after each where keyword deter-
mines the parse structure of this code. For example, the indentation
of the last line determines that it is part of the bindings introduced
by the first where instead of the second where.

Likewise, in Python one may write:

def factorial(x):
result = 1
for i in range(1, x + 1):

result = result * i
return result

print factorial(5)

Here the indentation determines that the for loop ends before the
return and the factorial function ends after the return.

While Haskell and Python are well known for being indentation-
sensitive languages, quite a few other languages also use indenta-
tion. Landin’s ISWIM [Landin 1966] introduced the concept of
the offside rule for indentation, which requires that all tokens in
an expression be indented at least as far as the first token of the
expression. Variations on this rule are used by Haskell, Miranda
[Turner 1989], occam [INMOS Limited 1984], Orwell [Wadler
1985], Curry [Hanus (ed.) 2006], and Habit [HASP Project 2010].
F# is indentation sensitive when its lightweight syntax is enabled
[Syme et al. 2010, §15.1]. The block styles in the YAML [Ben-
Kiki et al. 2009] data serialization language are indentation sen-
sitive, as are many forms in the Markdown [Gruber] and reStruc-
turedText [Goodger 2012] markup languages. Even Scheme has an
indentation-sensitive syntax in the form of SRFI-49 [Möller 2005],
though it is not often used.

Whitespace sensitivity may be controversial, but regardless of
whether it is a good idea from a language design perspective, it
is important that the grammars of layout-sensitive languages be
precisely specified. Unfortunately, many language specifications
are informal in their description of layout or use formalisms that
are not amenable to practical implementation. The task of parsing
layout is thus often left to ad hoc, handwritten code.

The lack of a standard formalism for expressing these layout
rules and of parser generators for such a formalism increases the
complexity of writing parsers for these languages. Often, practi-
cal parsers for these languages have significant structural differ-
ences from the language specification. For example, the layout
rule for Haskell is specified in terms of an extra pass between the
lexer and the parser that inserts explicit delimiters. This extra pass
uses information about whether the parsing that occurs later in the
pipeline will succeed or fail on particular inputs. Due to the re-
sulting cyclic dependency, Haskell implementations do not actu-
ally structure their parsers this way. As a result, the structural dif-
ferences between the implementation and the specification make it
difficult to determine if one accurately reflects the other.
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This paper aims to resolve this situation by proposing a gram-
mar formalism for expressing layout rules. This formalism is
both theoretically sound and practical to implement. Indentation-
sensitive grammars are easy and convenient to write, and fast and
efficient parsers can be implemented for them. The primary contri-
butions of this paper are:

– a grammar formalism for expressing indentation-sensitive lan-
guages, which is informally described in Section 2 and formally
defined later in Section 4;

– a demonstration in Section 3 of the expressivity of these gram-
mars by showing how to express the layout rules of ISWIM,
Miranda, Haskell, and Python in terms of these grammars;

– a development in Section 5 of GLR and LR(k) parsing algo-
rithms for these grammars, which is possible by a careful fac-
toring of item sets into state and indentation sets; and

– a demonstration in Section 6 of the practical performance of
these parsing techniques relative to existing ad hoc techniques.

Section 7 of this paper reviews related work. Section 8 concludes.
Note that Section 5 of this paper assumes a fair amount of

familiarity with standard parsing techniques and in particular the
work by Knuth [1965] on LR(k) parsing. Other than Section 5,
however, this paper assumes only a basic knowledge of context-
free grammars.

2. The Basic Idea

In order to support indentation-sensitive parsing, we use a modi-
fication of traditional, context-free grammars. We parse over a se-
quence of terminals where every terminal is annotated with the col-
umn at which it occurs in the source code. We call this its inden-
tation. During parsing, we also annotate each non-terminal with an
indentation. The grammar specifies a numerical relation that the
indentation of each non-terminal must have with the indentation of
its immediate children. These relations are usually chosen so the
indentation of a non-terminal is the minimum column at which any
token in the non-terminal is allowed to occur. Thus, the indentation
of a non-terminal usually coincides with the intuitive notion of how
far a block of code is indented. Formally, however, the indentation
of a non-terminal has no meaning other than that it must appropri-
ately relate to the indentation of the non-terminal’s children.

We call these grammars indentation-sensitive context-free gram-
mars (IS-CFG) to contrast them with traditional indentation-
insensitive context-free grammars (II-CFG). Section 3 gives exam-
ples of IS-CFGs for real world languages, and Section 4 formally
defines this class of grammars.

As a simple example, we may write A → ’(’=A>’)’= to
mean that ( and ) must be at the same indentation as the A on
the left of the production arrow but the A on the right must be at
a greater indentation. We may also write A → ’[’≥A>’]’≥ to
mean the same except that [ and ] must be at a greater or equal in-
dentation than the A on the left of the production arrow. In addition,
we may write A → A=A= to mean that the indentation of both
occurrences of A on the right of the production must be at indenta-
tions equal to that of the A on the left of the production. Combined
with the production A → ε, these form a grammar of nested paren-
theses and square brackets. In that grammar, matching parentheses
must align vertically, and things enclosed in parentheses must be in-
dented more than the parentheses are indented. Things enclosed in
square brackets merely must be indented more than the surrounding
code. Figure 1 shows examples of parse trees for this grammar on
the words (1[4(5)5]7)1 and (1[8(6)6[8]9]4(3)3)1 where we
write Xi to mean that i is the indentation of X . In these parse trees,
take particular note of how the indentations of the non-terminals
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Figure 1. Example IS-CFG parse trees for (1[4(5)5]7)1 and

(1[8(6)6[8]9]4(3)3)1 respectively.

and terminals relate according to the indentation relations specified
in the grammar.

In general, we write a production as A → X
⊲1
1 X

⊲2
2 · · ·X⊲n

n ,
where ⊲1, ⊲2, · · · , ⊲n are relations between indentations, to mean
that the indentation of A relates to the indentations of each
X1, X2, · · · , Xn according to ⊲1, ⊲2, · · · , ⊲n. That is to say, this
production requires j1 ⊲1 i, j2 ⊲2 i, · · · , jn ⊲n i if i is the in-
dentation of A and j1, j2, · · · , jn are the respective indentations of
X1, X2, · · · , Xn.

While in principle any set of indentation relations can be used,
we restrict ourselves to the relations =, >, ≥, and ⊛. The =,
>, and ≥ relations have their usual meanings. The ⊛ relation is
{(i, j) | i, j ∈ N} and effectively disassociates the indentation of a
child from that of its parent.

Indentation-sensitive languages typically have forms that re-
quire the first token of a subexpression to be at the same inden-
tation as the subexpression itself even though the non-terminal for
that subexpression does not normally require this. Thus for every
non-terminal or terminal, X , we introduce the non-terminal |X|
that is identical to X except that its indentation is always equal to
the indentation of its first token. This is merely syntactic sugar, as
we can introduce the production |a| → a= for each terminal a and

the production |A| → |Xm|= X
⊲m+1

m+1 · · ·X⊲n
n for each production

A → X
⊲1
1 X

⊲2
2 · · ·X⊲n

n where n ≥ 1 and each m ≤ n such that
X1, X2, · · · , Xm−1 are all nullable. For example, with the above
grammar, |A| would have the productions |A| → |’(’|= A>’)’=

and |A| → |’[’|≥ A>’]’≥ from the first two productions for A.
It would also have |A| → |A=|A= and |A| → |A=| from the
third production for A. By replacing ⊲m with =, the first symbol of
each production is forced to have the same indentation as the non-
terminal on the left of the production. By transitivity, this is the in-
dentation of the first token in the non-terminal. This is a straightfor-
ward, mechanical transformation requiring no input from the user.

3. Indentation-Sensitive Languages

Despite this system’s simplicity, it can express a wide array of
layout rules. This section demonstrates this by presenting the layout
rules of several languages in terms of IS-CFGs. Where possible,
we use the non-terminal names from the original grammar of each
language. Though not shown here, sketches for other indentation-
sensitive languages have been constructed for occam,1 Orwell,
Curry, Habit, and SRFI-49.

1 The additional indentation relation {(i+ 2, i) | i ∈ N} is required by
occam as it has forms that require increasing indentation by exactly 2.
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3.1 ISWIM and Miranda

With ISWIM, Landin [1966] introduced several innovations still
used in programming languages today. Among these is the use
of indentation to indicate program structure. Landin defines an
“offside rule”2 that specifies that:

The southeast quadrant that just contains the phrase’s first
symbol must contain the entire phrase, except possibly for
[parenthesized] subsegments. [Landin 1966]

This rule requires that all the tokens in a particular non-terminal
be at a column that is at least as far right (i.e., in the southeast
quadrant) as the column of the first token.

The IS-CFG for ISWIM is similar to the II-CFG for ISWIM that
ignores the offside rule except that we annotate each production of
the IS-CFG with appropriate indentation relations. As an example,
consider the productions in Figure 2 where we have applied the
offside rule to only the right-hand side of where clauses.3 Note
that the productions for |expr| are created automatically from the
productions for expr as specified in Section 2. We do likewise for
the terminals.4 Using this grammar to parse the expression

x + v where
x = -(

y + z) + w

results in the parse tree in Figure 3.
For productions that do not involve the offside rule, such as

the productions for addition and negation, we annotate the non-
terminals with = and the terminals with ≥. This means that these
productions do not change the current indentation and terminals
are allowed at any column greater than or equal to the current
indentation. For example, the expressions for x + v, (y + z), and
all the variable references are all at the same indentation as their
respective parents. For those expressions, no special indentation
rule is in effect and we simply use = to propagate the indentation
from parent to child. The terminals use ≥ so they can be at that or
any greater indentation. If a non-terminal is too far left (e.g., if w
was at column 5), then the ≥ constraint is violated and the code
would be rejected. This is a common pattern that we will see in
other grammars as well.

Next, consider forms that involve the offside rule. Wherever a
non-terminal A should trigger the offside rule, we simply use |A|≥

instead of A=. An example is the right-hand side of a where clause

where we use |expr|≥ instead of expr=. Because we use ≥ instead
of =, the right-hand side is allowed to be at a greater indentation
than its parent. We see this in the example parse tree where the
right-hand side of the where clause has an indentation of 6 while
its parent has an indentation of 1. If the top-level expr were at
indentation 7, however, such a parse with a right-hand side at
indentation 6 would be rejected. We also use |expr| instead of
expr so that the first token of the right-hand side of the where
clause has the same indentation as the entire right-hand side. As a
consequence, in the example parse tree, the indentations on the path
from the right-hand side of the where to the ’-’ are all exactly 6.

Finally, since parenthesized expressions are exempt from the
indentation constraints of the surrounding code, the production for
parenthesized expressions uses expr⊛ instead of expr=. This frees

2 Landin spells it as both “offside” and “off-side”. We adopt the spelling
consistent with the rule from sports.
3 Landin is not clear about whether his offside rule applies to all syntactic
forms. His examples imply that it does not. For the sake of example, we
also simplify where and omit the multiple bindings case. That case uses the
same techniques as Haskell’s statement blocks.
4 Of course, the productions generated for the terminals ’=’, ’+’, ’)’ and
’where’ are unreachable from the rest of the grammar and can be omitted.

Productions written by the user:

expr → expr= ’where’≥ ID≥ ’=’≥ |expr|≥

expr → expr= ’+’≥ expr=

expr → ’-’≥ expr=

expr → ’(’≥ expr⊛ ’)’≥

expr → ID≥

Productions added by desugaring:

|expr| → |expr|= ’where’≥ ID≥ ’=’≥ |expr|≥

|expr| → |expr|= ’+’≥ expr=

|expr| → |’-’|= expr=

|expr| → |’(’|= expr⊛ ’)’≥

|expr| → |ID|=

|’=’| → ’=’= |’+’| → ’+’= |’-’| → ’-’=

|’(’| → ’(’= |’)’| → ’)’= |ID| → ID=

|’where’| → ’where’=

Figure 2. IS-CFG productions for ISWIM.

expr1

expr1

expr1

ID1
x

’+’3 expr1

ID5
v

’where’7 ID2
x ’=’4 |expr|6

|expr|6

|’-’|6

’-’6

expr6

’(’7 expr0

expr0

ID1
y

’+’3 expr0

ID5
z

’)’6

’+’8 expr6

ID10
w

Figure 3. IS-CFG parse tree for ISWIM.

the indentation of the expression inside the parentheses from any
indentation constraints coming from the context of the expression.
This is used in the example parse tree where the y + z expression
has an indentation of 0 even though the (y + z) expression has an
indentation of 6. Uses of the offside rule inside the parentheses still
have effect, of course.

The Miranda language uses the same offside rule as ISWIM ex-
cept for two differences. The first is that expressions inside paren-
theses are subject to indentation constraints imposed by the context
outside the parentheses. The production for parenthesized expres-
sions thus uses = instead of ⊛ and is simply:

expr → ’(’≥ expr= ’)’≥

The second difference is that the language specification adopts the
notational convention that for any non-terminal x,

x(;) means that x is followed by an optional semicolon
and is subject to the offside rule..., so that every token of x
must lie below or to the right of the first. Provided the layout
makes it clear where x terminates, the trailing semicolon
may be omitted. [Turner 1989, §25]

This notation is easily handled by introducing, for each non-
terminal A, the non-terminal A (;) and the two productions

A (;) → |A|≥ and A (;) → |A|≥ ’;’.
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L (<n>:ts) (m:ms) = ’;’ : (L ts (m:ms)) if m = n
= ’}’ : (L (<n>:ts) ms) if n < m

L (<n>:ts) ms = L ts ms
L ({n}:ts) (m:ms) = ’{’ : (L ts (n:m:ms)) if n > m
L ({n}:ts) [] = ’{’ : (L ts [n]) if n > 0
L ({n}:ts) ms = ’{’ : ’}’ : (L (<n>:ts) ms)
L (’}’:ts) (0:ms) = ’}’ : (L ts ms)
L (’}’:ts) ms = parse-error
L (’{’:ts) ms = ’{’ : (L ts (0:ms))
L ( t :ts) (m:ms) = ’}’ : (L (t:ts) ms)

if m 6= 0 and parse-error(t)
L ( t :ts) ms = t : (L ts ms)
L [] [] = []
L [] (m:ms) = ’}’ : L [] ms if m 6= 0

Figure 4. Haskell’s L function [Marlow (ed.) 2010, §10.3].

3.2 Haskell

3.2.1 Language

Haskell uses a more sophisticated offside rule than does ISWIM.
Indentation-sensitive blocks (e.g. the bodies of do, case, or where
expressions) are made up of one or more statements or clauses that
not only are indented relative to the surrounding code but also are
indented to the same column as each other. Thus, lines that are more
indented than the block continue the current clause, lines that are
at the same indentation as the block start a new clause, and lines
that are less indented than the block are not part of the block. In
addition, semicolons (;) and curly braces ({ and }) can explicitly
separate clauses and delimit blocks, respectively. Explicitly delim-
ited blocks are exempt from indentation restrictions arising from
the surrounding code.

While the indentation rules of Haskell are intuitive to use in
practice, the way that they are formally expressed in the Haskell
language specification [Marlow (ed.) 2010, §10.3] is not nearly so
intuitive. The indentation rules are specified in terms of both the
lexer and an extra pass between the lexer and the parser. Roughly
speaking, the lexer inserts special {n} tokens where a new block
might start and special <n> tokens where a new clause within a
block might start. The extra pass then translates these tokens into
explicit semicolons and curly braces.

The special tokens are inserted according to the following rules:

– If a let, where, do, or of keyword is not followed by the
lexeme {, the token {n} is inserted after the keyword, where n
is the indentation of the next lexeme if there is one, or 0 if the
end of file has been reached.

– If the first lexeme of a module is not { or module, then it is
preceded by {n} where n is the indentation of the lexeme.

– Where the start of a lexeme is preceded only by white space
on the same line, this lexeme is preceded by <n>, where n
is the indentation of the lexeme, provided that it is not, as a
consequence of the first two rules, preceded by {n}. [Marlow
(ed.) 2010, §10.3]

Between the lexer and the parser, an indentation resolution pass
converts the lexeme stream into a stream that uses explicit semi-
colons and curly braces to delimit clauses and blocks. The stream of
tokens from this pass is defined to be L tokens [] where tokens
is the stream of tokens from the lexer and L is the function in Fig-
ure 4. Thus the context-free grammar has to deal with only semi-
colons and curly braces. It does not deal with layout.

This L function is fairly intricate, but the key clauses are the
ones dealing with <n> and {n}. After a let, where, do, or of
keyword, the lexer inserts a {n} token. If n is a greater indentation
than the current indentation, then the first clause for {n} executes,

case → ’case’> exp= ’of’> altBlock=

-- Explicitly delimited blocks
altBlock → ’{’> alts⊛ ’}’⊛

-- Layout-delimited blocks
altBlock → altLayout>

altLayout → altLayout= |alts|=

altLayout → |alts|=

-- Clause sequences
alts → alt=

alts → alts= ’;’> alt=

Figure 5. Grammatical productions for case.

an open brace ({) is inserted, and the indentation n is pushed on
the second argument to L (i.e., the stack of indentations). If a line
starts at the same indentation as the top of the stack, then the first
clause for <n> executes and a semicolon (;) is inserted to start a
new clause. If it starts at a smaller indentation, then the second
clause for <n> executes and a close brace (}) is inserted to close
the block started by the inserted open brace. Finally, if the line is at
a greater indentation, then the third clause executes, no extra token
is inserted, and the line is a continuation of the current clause. The
effect of all this is that {, ;, and } tokens are inserted wherever
layout indicates that blocks start, new clauses begin, or blocks end,
respectively. The other clauses in L handle a variety of other edge
cases and scenarios.

Note that L uses parse-error to signal a parse error, but uses
parse-error(t) as an oracle that predicts the future behavior of
the parser that runs after L. Specifically,

if the tokens generated so far by L together with the next
token t represent an invalid prefix of the Haskell grammar,
and the tokens generated so far by L followed by the token
“}” represent a valid prefix of the Haskell grammar, then
parse-error(t) is true. [Marlow (ed.) 2010, §10.3]

This handles code such as

let x = do f; g in x

where the block starting after the do needs to be terminated before
the in. This requires knowledge about the parse structure in order
to be handled properly, and thus parse-error(t) is used to query
the parser for this information.

In addition to the operational nature of this definition, the use
of the parse-error(t) predicate means that L cannot run as an
independent pass; its execution must interact with the parser. In
fact, the Haskell implementations GHC [GHC 2011] and Hugs
[Jones 1994] do not use a separate pass for L. Instead, the lexer
and parser share state consisting of a stack of indentations. The
parser accounts for the behavior of parse-error(t) by making
close braces optional in the grammar and appropriately adjusting
the indentation stack when braces are omitted. The protocol relies
on “some mildly complicated interactions between the lexer and
parser” [Jones 1994] and is tricky to use. While preparing the
parser in Section 6, we found that even minor changes to the error
propagation of the parser affected whether syntactically correct
programs were accepted by this style of parser.

While we may believe the correctness of these parsers based
on their many years of use and testing, the significant and funda-
mental structural differences between their implementation and the
language specification are troubling.
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3.2.2 Grammar

Haskell’s layout rule is more complicated than those of ISWIM
and Miranda, but is also easily specified as an IS-CFG. By using
an IS-CFG there is no need for an intermediate L function, and
the lexer and parser can be cleanly separated into self-contained
passes. The functionality of parse-error(t) is simply implicit
in the structure of the grammar.

Figure 5 shows example productions for case expressions. For
productions that do not change the indentation, we annotate non-
terminals with a default indentation relation of = and terminals
with a default indentation relation of >. We use > instead of ≥
because Haskell distinguishes tokens that are at an indentation
equal to the current indentation from tokens that are at a strictly
greater indentation. The former start a new clause while the latter
continue the current clause.

In Haskell, a block can be delimited by either explicit curly
braces or use of the layout rule. In Figure 5, this is reflected by
the two different productions for altBlock. If altBlock expands
to ’{’> alts⊛ }⊛, then the ⊛ relation allows alts to not re-
spect the indentation constraints from the surrounding code.5 Since
Haskell’s layout rule allows closing braces to occur at any col-
umn, we use ⊛ instead of the usual > on ’}’. On the other hand,
if altBlock expands to altLayout>, then the > relation in-
creases the indentation. In the productions for altLayout, the use
of |alts| instead of alts ensures that the first tokens of the alts
all align to the same column. Note that within an alts, each alt
must be separated by a semicolon (;). Thus, because altLayout
refers to alts instead of alt, each instance of alt can be sepa-
rated using either layout or a semicolon. When using curly braces
to explicitly delimit a block, semicolons must always be used.

Other grammatical forms that use the layout rule follow the
same general pattern as case with only minor variation to account
for differing base cases (e.g., let uses decl in place of alt) and
structures (e.g., a do block is a sequence of stmt ending in an exp).

A subtlety of Haskell’s layout rule is that tokens on the same line
as, but after, a closing brace may not have to respect the current in-
dentation. This is because the L function considers the indentation
of only the first token of a line (i.e., where <n> is inserted) and
tokens after a let, where, do or of keyword (i.e., where {n} is
inserted). One might view this as an artifact of how the language
specification uses L to define layout, but this aspect of Haskell’s
layout rule is still expressible by having the lexer annotate tokens
whose indentation is to be ignored with an indentation of infin-
ity.6 Since terminals have an indentation relation of >, the infinite
indentation of these tokens will always match. We have the lexer
handle this instead of the parser because it is the linear order of to-
kens instead of the grammatical structure of the syntax that controls
what tokens are indentation sensitive. For example, the token after
the do keyword is indentation sensitive regardless of the structure
of the expression following the do. This requires the lexer to main-
tain a bit of extra state indicating whether we are at the start of a
line or after a let, where, do or of keyword, but this is a fairly
light requirement as the lexer is presumably already tracking state
to determine the column of each token.

Finally, GHC also supports an alternative indentation rule that
is enabled by the RelaxedLayout extension. It allows opening
braces to be at any column regardless of the current indentation
[GHC 2011, §1.5.2]. This is easily implemented by changing the
first production for altBlock to be:

altBlock → ’{’⊛ alts⊛ ’}’⊛

5 This assumes no tokens are at column 0, which we reserve for this purpose.
6 Of course, column information for error reporting should still use the
actual position of the token.

3.3 Python

3.3.1 Language

Python represents a different approach to specifying indentation
sensitivity. It is explicitly line oriented and features NEWLINE in its
grammar as a terminal that separates statements. The grammar uses
INDENT and DEDENT tokens to delimit indentation-sensitive forms.
An INDENT token is emitted by the lexer whenever the start of a line
is at a strictly greater indentation than the previous line. Matching
DEDENT tokens are emitted when a line starts at a lesser indentation.

In Python, indentation is used only to delimit statements, and
there are no indentation-sensitive forms for expressions. This, com-
bined with the simple layout rules, would seem to make parsing
Python much simpler than for Haskell, but Python has line joining
rules that complicate matters.

Normally, each new line of Python code starts a new statement.
If, however, the preceding line ends in a backslash (\), then the
current line is “joined” with the preceding line and is a continuation
of the preceding line. In addition, tokens on this line are treated as
if they had the same indentation as the backslash itself.

Python’s explicit line joining rule is simple enough to imple-
ment directly in the lexer, but Python also has an implicit line join-
ing rule. Specifically, expressions

in parentheses, square brackets or curly braces can be split
over more than one physical line without using backslashes.
... The indentation of the continuation lines is not important.
[Python, §2.1.6]

This means that INDENT and DEDENT tokens must not be emitted by
the lexer between paired delimiters. For example, the second line of
the following code should not emit an INDENT and the indentation
of the third line should be compared to the indentation of the first
line instead of the second line.

x = [
y ]
z = 3

Thus, while the simplicity of Python’s indentation rules is attrac-
tive, they contain hidden complexity that requires interleaving the
execution of the lexer and parser.

3.3.2 Grammar

Though Python’s specification presents its indentation rules quite
differently from Haskell’s specification, once we translate it to an
IS-CFG, it shares many similarities with that of Haskell. The lexer
still needs to produce NEWLINE tokens, but it does not produce
INDENT or DEDENT tokens. As with Haskell, we start with a gram-
mar where the non-terminals and terminals are annotated with in-
dentation relations of = and >, respectively.

In Python, the only form that changes indentation is the suite
non-terminal, which represents a block of statements contained
inside a compound statement. For example, one of the productions
for while is:

while_stmt → ’while’> test= ’:’> suite=

A suite has two forms. The first is for a single-line statement and
is the same as with the standard Python grammar. The second is
for multi-line statements. The following productions handle both
of these two cases.

suite → stmt_list= NEWLINE>

suite → NEWLINE> block>

block → block= |statement|=

block → |statement|=
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When a suite is of the multi-line form (i.e., using the second pro-
duction), the initial NEWLINE token ensures that the suite is on a
separate line from the preceding header. The block inside a suite
must then be at some indentation greater than the current inden-
tation. Such a block is a sequence of statement forms that all
start with their first token at the same column. In Python’s gram-
mar, the productions for statement already include a terminating
NEWLINE, so NEWLINE is not needed in the productions for block.

For implicit line joining, we employ the same trick as for paren-
thesized expressions in ISWIM and braces in Haskell. For any pro-
duction that contains parentheses, square brackets or curly braces,
we annotate the part contained in the delimiters with the ⊛ inden-
tation relation. Since the final delimiter is also allowed to appear at
any column, we annotate it with ⊛. For example, one of the pro-
ductions for list construction becomes:

atom → ’[’> listmaker⊛ ]⊛

There remain a few subtleties with Python’s line joining rules that
we must address. First, as with Haskell, tokens after a closing
delimiter can appear at any column. For example, the following
code is validly indented according to Python’s rules:

while True:
x = 1 + (

2) + 3

To handle this we use the same trick as for Haskell and annotate
tokens that are not at the start of a line with an infinite indentation.

Second, while a lexer based on regular expressions can detect
the start of a line and thus produce finite indentations for the first to-
ken of a line but infinite indentations for other tokens, it cannot de-
tect matching parentheses to determine that NEWLINE tokens should
be omitted inside delimited forms. Thus non-terminals that occur
inside delimited forms need to allow the insertion of NEWLINE to-
kens at arbitrary locations. This may mean there have to be two
forms of a non-terminal (i.e., for expressions inside versus outside
a delimited form), but this is a fairly mechanical transformation
that can be automated by the use of syntactic sugar similar to the
syntactic sugar for |A|. Alternatively, it may be possible to use a
grammar that does not use NEWLINE tokens at all and instead, like
for Haskell, uses vertical alignment to delimit statements.

Finally, as with the standard Python parser, the lexer still han-
dles the explicit line joining that is triggered by a line ending in
a backslash (\). It gives the tokens of an explicitly joined line the
same indentation as the backslash itself, and the backslash is not
emitted as a token.

3.4 Conventions and syntactic sugar

In an IS-CFG, every symbol in every production must be anno-
tated with an indentation relation. In many indentation-sensitive
languages, however, productions often allow terminals to appear
at any indentation greater than the current indentation but do not
themselves change the current indentation. Thus we can simplify
the job of writing an IS-CFG by adopting the convention that if a
symbol on the right-hand side of a production is not explicitly an-
notated with an indentation relation, then it implicitly defaults to =
if it is a non-terminal and > if it is a terminal. For example, with
this convention, the only productions in Figure 5 that need explicit
annotations are those for altBlock. All other productions simply
use the defaults. Using this convention most productions in a gram-
mar do not have to be annotated with indentation relations. They
thus look like ordinary II-CFG productions, and only the forms that
explicitly deal with indentation must be explicitly annotated.

In addition, just as II-CFGs often allow the use of alternation
bars (|) or Kleene stars (*) to simplify writing grammars, it is often
convenient to allow symbols on the right-hand side of a production

to be annotated with a composition of indentation relations. Thus
we might write A → C>⊛ instead of the more verbose

A → B⊛

B → C>

These conventions are merely notational conveniences and do not
affect the fundamental theory.

4. Indentation-Sensitive Grammars

The formalism for IS-CFGs that this paper proposes is an extension
of II-CFGs. Thus to review the standard definition of II-CFGs,
recall that a grammar is a four-tuple G = (N,Σ, δ, S) where N
is a finite set of non-terminal symbols, Σ is a finite set of terminal
symbols, δ is a finite production relation, and S ∈ N is the start
symbol. The relation δ is a subset of N × (N ∪ Σ)∗, and we
write A → X1X2 · · ·Xn for a tuple (A,X1X2 · · ·Xn) that is
an element of δ.

As a notational convention let A,B,C be elements of N , let
a, b, c be elements of Σ, and let X,Y, Z be elements of N ∪Σ. Let
U, V,W be elements of (N ∪ Σ)∗, and u, v, w be elements of Σ∗.

We define a rewrite relation (⇒) ⊆ (N ∪ Σ)∗×(N ∪ Σ)∗ such
that UAV ⇒ UX1X2 · · ·XnV iff A → X1X2 · · ·Xn. We define
(⇒∗) as the reflexive, transitive closure of (⇒).

The language recognized by a grammar is then defined as
L (G) = {w ∈ Σ∗ | S ⇒∗ w} and is the set of words reachable
by the rewrite relation from the start symbol.

An IS-CFG is also a four-tuple, G = (N,Σ, δ, S), except that
δ and S account for indentations. S is an element of N × N and
records the indentation of the initial non-terminal. The production
relation, δ, is an element of N × ((N ∪ Σ)× I)∗ where I is the
domain of indentation relations and each indentation relation is a
subset of N×N. In principle, these indentation relations can be any
subset of N × N, but for our purposes we restrict I to the relations
=, >, ≥ and ⊛.

Here and in the remainder of this paper, we restrict ourselves to
finite indentations, but everything generalizes straightforwardly to
languages with infinite indentations.

As a notational convention, let i, j and l be indentations and ⊲
be an indentation relation. For the sake of compactness, we adopt
the notations Xi and X⊲, respectively, for a pair of X and either
an indentation i or an indentation relation ⊲. Thus we write A →
X

⊲1
1 X

⊲2
2 · · ·X⊲n

n for a tuple (A, (X1, ⊲1) (X2, ⊲2) · · · (Xn, ⊲n))
that is an element of δ.

As with II-CFGs, we define a rewrite relation

(⇒) ⊆ ((N ∪ Σ)× N)∗ × ((N ∪ Σ)× N)∗

where UAiV ⇒ UX
j1
1 X

j2
2 · · ·Xjn

n V iff A → X
⊲1
1 X

⊲2
2 · · ·X⊲n

n

and j1 ⊲1 i, j2 ⊲2 i, · · · , jn ⊲n i. The (⇒∗) relation, the language
L (G), derivations, and parse trees are all defined as with II-CFGs
except that they are in terms of this new rewrite relation.

Note that every II-CFG is encodable as an IS-CFG by translat-
ing every production A → X1X2 · · ·Xn to A → X⊛

1 X⊛

2 · · ·X⊛
n

and every word a1a2 · · · am to a
i1
1 a

i2
2 · · · aim

m with arbitrary
i1, i2, · · · , im ∈ N. Conversely, erasing the indentations and in-
dentation relations in an IS-CFG results in an II-CFG. Note that
translating from an II-CFG to an IS-CFG will not introduce ambi-
guities, but translating from an IS-CFG to an II-CFG might.

5. Parsing

Of course, a grammar is not practically useful if we cannot effec-
tively parse with it. In this section, we show how to modify tradi-
tional parsing techniques for II-CFGs to handle IS-CFGs. We show
this for both GLR and LR(k) parsing. This can also be done for
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CYK, SLR, LALR, GLL, and LL(k), but we do not present those
here as they are straightforward once the techniques for LR(k) pars-
ing are understood.

In order to derive GLR and LR(k) parsing algorithms, we first
prove a number of basic properties about indentation relations
and IS-CFGs (Section 5.1). Then, we model IS-CFGs by using
infinite II-CFGs (Section 5.2). Next, we consider traditional rewrite
systems (Section 5.3) and parsing algorithms (Section 5.4) applied
to this infinite II-CFG. Finally, we factor out the parts of these
constructions representing indentations so that these algorithms can
be expressed finitely (Sections 5.5, 5.6 and 5.7) and discuss some
practical efficiency considerations (Section 5.8). The key insights
here are, first, expressing the semantics of an IS-CFG in terms of
an infinite II-CFG and, second, factoring the representation of item
sets into a finite representation.

5.1 Basic properties

There are a few technical definitions and properties that we will use
in our parsing algorithms. We present these without discussion.

Definition 1. A non-terminal A is nullable if Ai ⇒∗ ε for all i.

Lemma 2 (Composition of indentation relations). Every finite se-
quence of compositions of elements from I is one of =, ≥, ⊛, ≥⊛,
>n, or >n

⊛ for some n ≥ 1.

Proof. = is a left and right identity under composition. ⊛ is a left
annihilator under composition. The compositions of > with ≥ and
≥ with > are both >.

Lemma 3 (Closure of indentation relations). The closure of I

under finite sequences of composition and either finite or infinite
sets of unions is the set of unions of one or more of =, ≥, ⊛,
≥⊛, >n, and >m

⊛ for some n,m ≥ 1 where each of these is
in the union only once. We call this closure Ī and as a notational
convention let ⊲̄ be an element of Ī.

Proof. By Lemma 2, every finite composition is of the form =, ≥,

⊛, ≥⊛, >n, or >m
⊛. Since >n⊇>n′

if n′ ≥ n and >m
⊛⊇>m′

⊛

if m′ ≥ m, at most one occurrence of >n and one occurrence of
>m

⊛ needs to be in the union.

Lemma 4 (Indentations of unique parses). If Ai ⇒∗ W , then

the set of all indentations i′ such that Ai′ ⇒∗ W using the same
sequence of productions is either the set N, a singleton or the upper
bounded set {i | i ≤ n} for some n ∈ N. Furthermore, if it is a
singleton or upper bounded set, then the maximum indentation is
limited to be at most the maximum indentation in W .

Proof. Consider the derivation as a parse tree. Each edge can be
annotated with the indentation relation between parent and child
nodes. The relation between the indentation of the root Ai and each
leaf aj is then a composition of the edges in the path from Ai to aj .
The possible values of i are the values compatible with every leaf
indentation and the root’s relation to them. By Lemma 2 every such
relation is one of =, ≥, ⊛, ≥⊛, >p or >q

⊛ and for a particular leaf
the compatible root indentations are thus are either N, a singleton,
or {i | i ≤ m} for some m ∈ N. The intersection of these over
all the leaves in the parse tree is thus either the set N, a singleton,
or {i | i ≤ n} for some n ∈ N.

Lemma 5 (Indentations of ambiguous parses). If Ai ⇒∗ W ,

then the set of all indentations i′ such that Ai′ ⇒∗ W using
any sequence of productions is either the set N or a finite subset
of N. Moreover, the finite subsets of N are bounded by the maximum
indentation in W .

Proof. By Lemma 4 and the union over all parses.

5.2 Translating IS-CFGs to infinite II-CFGs

The first step of our approach is to model the IS-CFG by an infinite
II-CFG. Of course we do not actually compute with this infinite
grammar, but it provides a mathematical model from which we
derive a computable parsing algorithm. Given an IS-CFG G =
(N,Σ, δ, S), this II-CFG is G′ = (N ′,Σ′, δ′, S′) where:

N
′ = N × N

Σ′ = Σ× N

δ
′ =

{

A
i → X

j1
1 X

j2
2 · · ·Xjn

n

|A → X
⊲1
1 X

⊲2
2 · · ·X⊲n

n ∈ δ,

i, j1, j2, · · · , jn ∈ N,

j1 ⊲1 i, j2 ⊲2 i, · · · , jn ⊲n i}

S
′ = S

This grammar has an infinite number of non-terminals, termi-
nals and productions per non-terminal, but we still limit derivations
to finite lengths.

Note that traditional parsing algorithms on this grammar may
not terminate due to the infinite size of G′, so we formally model
G′ as the limit of successive approximations where each approxi-
mation bounds the maximum indentation in any non-terminal, ter-
minal or production to successively greater values. We gloss over
this detail in the remainder of this paper.

Lemma 6 (Equivalence). S ⇒∗ W for G iff S′ ⇒∗ W for G′.

Proof. By induction on the number of reductions and the fact that
for all W and W ′, W ⇒ W ′ in G iff W ⇒ W ′ in G′.

5.3 Rewrite system

In this subsection, we consider LR(k) parsing in terms of a rewrite
system that concisely specifies what it means for a parser to be
LR(k). In later subsections, we derive more conventional stack-
based parsing algorithms. In this development, we closely follow
the original presentation of LR(k) parsing by Knuth [1965] with
only minor changes to use current notational conventions.

Recall that an LR(k) parser is one that always produces a right-
most derivation, and a rightmost derivation is one in which the
rightmost non-terminal is always expanded before any other non-
terminals. The symbols resulting from such an expansion step are
called the handle. For example, if

S ⇒∗
UX

j
V ⇒ UY

l1
1 · · ·Y

lp
p V ⇒∗

W

is a rightmost derivation, then a handle of UY
l1
1 · · ·Y

lp
p V is

Y
l1
1 · · ·Y

lp
p . Note that in order for this to be a rightmost deriva-

tion, V necessarily contains only elements of Σ, though U and

Y
l1
1 · · ·Y

lp
p may contain elements of both Σ and N .

Since an LR(k) parser works from the result of a rightmost
derivation back to the start symbol, LR(k) parsing can be ac-
complished by iteratively searching for the handle of a string
and performing the appropriate reduction. Again following Knuth
[1965], given the infinite II-CFG G′ = (N ′,Σ′, δ′, S′) we
construct the right-linear (and thus regular) grammar G′′ =
(N ′′, N ′ ∪ Σ′, δ′′, S′′) for recognizing prefixes that end in a han-
dle. Here the non-terminals are

N
′′ =

{[

A
i
, a

j1
1 a

j2
2 · · · a

jk
k

]
∣

∣

∣
A

i ∈ N
′
, a

j1
1 , a

j2
2 , · · · , a

jk
k ∈ Σ′

}

and represent the part of the string that contains the handle. The

a
j1
1 a

j2
2 · · · a

jk
k track the k terminals expected after the handle and
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are the lookahead. For each Ai → X
j1
1 · · ·Xjm

m X
jm+1

m+1 · · ·Xjn
n in

δ′ and each u = a
l1
1 a

l2
2 · · · a

lk
k , we include the following in δ′′:

[

A
i
, u

]

→ X
j1
1 · · ·Xjn

n u
[

A
i
, u

]

→ X
j1
1 · · ·Xjm

m

[

X
jm+1

m+1 , v
]

for each v ∈ Hk

(

X
jm
m · · ·Xjn

n u
)

Here, u and v are the lookaheads expected by the parser.
Hk (W ) computes such lookaheads by computing the k-length
prefixes of L (W ) and is defined as

Hk (W ) =
{

a
l1
1 a

l2
2 · · · a

lk
k

∣

∣

∣
W ⇒∗

a
l1
1 a

l2
2 · · · a

lk
k U

}

where the reduction relation ⇒∗ is for G′.
The intuition here is that the first production expands to the

handle along with a lookahead string and the second production
expands to an intermediate non-terminal that in turn eventually
expands to the handle.

Since this grammar is regular, it can be implemented by a state
machine [Brzozowski 1964], which leads to the following rewrite
based algorithm for parsing.

Algorithm 7. Given input string W , if S = W then stop and
accept the string. Otherwise, find all prefixes of W that match
the regular language L (G′′). If there are no such matches, then
reject the string. Otherwise, non-deterministically choose one of
the matches, and let the last production of the match be

[

A
i
, u

]

→ X
j1
1 X

j2
2 · · ·Xjn

n u

Replace this occurrence of X
j1
1 X

j2
2 · · ·Xjn

n in W with Ai as it is
a handle of W , and repeat this algorithm with the new value of W .

Note that this algorithm is non-deterministic and accepts the
word if any path through the algorithm accepts the word. We allow
this because productions in G (e.g., A → B⊛ and A → C>)
may produce multiple productions when translated to G′ (e.g., all
Ai → Bj and Ai → Ck such that k > i). These may introduce
ambiguities in G′ even when there are no ambiguities in G. Once
we convert to a finite version of the parsing algorithm, we will
eliminate this non-determinism.

5.4 Parsing with stacks

Of course, rewriting the entire string and restarting the automaton
from the start as done in Algorithm 7 is inefficient. Instead, we can
save a trace of the states visited. When a handle is reduced, we
rewind to the state just before the first symbol of the handle and
proceed from there. This is the essential idea behind the traditional
LR(k) parser development by Knuth [1965]. We apply this idea to
our infinite II-CFG to obtain the following construction.

We begin with the notion of an item. We denote an item by
[

A
i → X

j1
1 · · ·Xjm

m •X
jm+1

m+1 · · ·Xjn
n ;u

]

where Ai → X
j1
1 · · ·Xjn

n is a production in G′ and u ∈ (Σ′)
k

is the lookahead. The algorithm maintains a stack of sets of items
S0S1 · · · Sn where Sn is the top element of the stack. We use the
notation S0S1 · · · Sn | a1a2 · · · akw to denote that S0S1 · · · Sn is
the current stack and a1a2 · · · akw is the input remaining to be
consumed by the parser.

To parse a word w, we start with the configuration

S0 | w ⊣i0
1 ⊣i0

2 · · · ⊣i0
k

where S0 =
{[

Ŝ → •S′;⊣0
1⊣

0
2 · · · ⊣0

k

]}

. We let Ŝ be a fresh non-

terminal and ⊣1,⊣2, · · · ,⊣k be fresh terminals that pad the string

to have at least k tokens of lookahead. We then run the following
parsing algorithm.

Algorithm 8. Given configuration S0S1 · · · Sn | ai1
1 , a

i2
2 · · · a

ik
k w,

if
[

Ŝ → S•;u
]

∈ Sn and a
i1
1 , a

i2
2 · · · a

ik
k w =⊣i0

1 ⊣i0
2 · · · ⊣i0

k , then

accept. Otherwise:

1. Compute the closure, S ′, of Sn where S ′ is the least set of items
satisfying the recurrence

S ′ = Sn∪
{[

X
jm+1

m+1 → •Y l1
1 · · ·Y

lp
p ; v

]

∣

∣

∣

[

A
i → X

j1
1 · · ·Xjm

m •X
jm+1

m+1 · · ·Xjn
n ;u

]

∈ Sn,

X
jm+1

m+1 → Y
l1
1 · · ·Y

lp
p ∈ δ

′

v ∈ Hk

(

X
jm+1

m+1 · · ·Xjn
n u

)}

2. Compute the acceptable lookahead set K where

K =
{

v
∣

∣

∣

[

A
i → X

j1
1 · · ·Xjm

m •X
jm+1

m+1 · · ·Xjn
n ;u

]

∈ S ′
,

v ∈ Hk

(

X
jm+1

m+1 · · ·Xjn
n u

)}

3. For each production Ai → X
j1
1 · · ·Xjn

n in δ′, compute the

acceptable lookahead set K
(

Ai → X
j1
1 · · ·Xjn

n

)

where

K
(

A
i → X

j1
1 · · ·Xjn

n

)

=
{

u
∣

∣

∣

[

A
i → X

j1
1 · · ·Xjn

n •;u
]

∈ S ′
}

4. Let GOTO
(

S, Zl
)

=
{[

A
i → X

j1
1 · · ·Xjm

m X
jm+1

m+1 •X
jm+2

m+2 · · ·Xjn
n ; v

]

∣

∣

∣

[

A
i → X

j1
1 · · ·Xjm

m •X
jm+1

m+1 X
jm+2

m+2 · · ·Xjn
n ;u

]

∈ S,

X
jm+1

m+1 = Z
l
}

and non-deterministically choose one of the following.

(a) If a
i1
1 a

i2
2 · · · a

ik
k ∈ K, then do a shift action by looping back

to the start of the algorithm with the new configuration

S0S1 · · · SnGOTO
(

Sn, a
i1
1

)

| ai2
2 · · · a

ik
k w

(b) If a
i1
1 a

i2
2 · · · a

ik
k ∈ K

(

Ai → X
j1
1 · · ·Xjn

n

)

for some pro-

duction Ai → X
j1
1 · · ·Xjn

n , then do a reduce action by
looping back to the start of the algorithm with the new con-
figuration

S0S1 · · · Sn−mGOTO
(

Sn−m, A
i
)

| ai1
1 a

i2
2 · · · a

ik
k w

5.5 Finite representations of stacks

Algorithm 8 contains both non-determinism and infinite sets. Here
we depart from Knuth [1965] in order to eliminate these. Up to
this point, our parser is simply a standard LR(k) parser, albeit on
an infinite II-CFG, and we rely on the correctness of the standard
LR(k) parsing algorithm for our correctness. From here forward,
we ensure correctness by ensuring that our modified version of the
algorithm models the same item sets as Algorithm 8, albeit using a
more efficient representation.

As a first step, consider the sets of items that form the stack.
Each item is of the form

[

A
i → X

j1
1 · · ·Xjm

m •X
jm+1

m+1 · · ·Xjn
n ;u

]

where Ai ∈ N × N, X
j1
1 , · · · , Xjn

n ∈ (N ∪ Σ) × N, and u ∈
(Σ× N)k. Observe that the indentations to the left of the bullet,
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j1, · · · , jm, do not effect the parsing process, and multiple items
that differ only in the values of j1, · · · , jm can therefore be repre-
sented by a single item. This reduces the state space slightly, but
we can go further and also factor out jm+1, · · · , jn by observing
that the algorithm preserves the following completeness property
for item sets.

Definition 9 (Item-set completeness). We say that an item set, S,
is complete if for every A → X

⊲1
1 · · ·X⊲n

n ∈ δ,
[

A
i → X

j1
1 · · ·Xjm

m •X
jm+1

m+1 · · ·Xjn
n ;u

]

∈ S

implies that

S ⊇
{[

A
i → X

j1
1 · · ·Xjm

m •X
j′m+1

m+1 · · ·X
j′n
n ;u

]

∣

∣j
′
m+1, · · · , j

′
n ∈ N, j

′
m+1 ⊲m+1 i, · · · , j′n ⊲n i

}

This property is preserved by each loop through Algorithm 8, as
stated in the following lemma.

Lemma 10. If every item set on the stack is complete at the start
of a loop through Algorithm 8, then every item set on the new stack
at the start of the next loop is also complete.

Proof. For every production Xm+1 → Y
⊲1
1 · · ·Y

⊲p
p , if the clo-

sure step adds the item
[

X
jm+1

m+1 → •Y l1
1 · · ·Y

lp
p ; v

]

, then by con-

struction it adds all items of the form

[

X
jm+1

m+1 → •Y
l′1
1 · · ·Y

l′p
p ; v

]

where l′1 ⊲1 jm+1, · · · , l
′
p ⊲1 jm+1. Thus this step of the algorithm

preserves completeness.
The GOTO operation filters the set of items by requiring that

X
jm+1

m+1 = Zl, but afterwards X
jm+1

m+1 is moved to the left of the
bullet and is therefore no longer relevant to the completeness of
the item set. Since jm+1 is related to jm+2, · · · , jn only indirectly
through i, the remaining jm+2, · · · , jn are complete given the i
that remain in the item set.

Since the item sets in the stack are all complete, we no longer
need to represent the individual j1, · · · , jn. The only indentations
we need to record are i, the indentation of the non-terminal on
the left-hand side of the production, and the indentations in u, the
expected lookahead. Thus, we can represent items that differ only
in the values of j1, · · · , jn with

[

A → X
⊲1
1 · · ·X⊲m

m •X
⊲m+1

m+1 · · ·X⊲n
n ;L

]

where A → X
⊲1
1 , · · · , X⊲n

n ∈ δ and L ⊆ N× (Σ× N)k. We call
L the indentation-and-lookahead set. Each element of L is a pair
of i, the indentation for A, and u, the lookahead word.

With this factoring we can implement a GLR parser [Tomita
1985] by letting k = 0 and translating Algorithm 8 to use this rep-
resentation of item sets. Since k = 0, the lookahead is always the
empty string and L is simply a set of indentations. By examining
the algorithm we can further determine that this set will always be
either the set N, a finite subset of N, or the union of a finite subset
of N with the set of all elements of N greater than j for some j ∈ N.
These sets are all finitely representable and thus computable. Fi-
nally, the standard technique of elaborating the possible item sets
and the transitions between them can be used to construct a state
machine for a push-down automaton that recognizes G. During this
elaboration, we keep the set of indentations, L, abstract. This en-
sures that there are only finitely many item sets to be elaborated. At
runtime, both the current state and the stack elements then simply
store a reference to one of these pre-elaborated item sets along with
a concrete indentation set. Any non-determinism remaining in the
algorithm is handled using the standard stack representation used
by GLR parsers.

5.6 Parsing LR(k) grammars

After having factored the representation of the item sets this far, we
eliminate the non-determinism in the algorithm by restricting the
algorithm to only LR(k) grammars. Recall that an LR(k) grammar
is defined to have a unique rightmost derivation for any given word.
Thus there is always a unique handle at each parsing step, and
thus in the non-deterministic choice at the end of Algorithm 8
there is never more than one allowed choice. Otherwise, we have a
shift/reduce or a reduce/reduce conflict, and the grammar is not an
LR(k) grammar.

With the original representation of item sets, we did not apply
this criterion because there might be multiple reductions that differ
only in their indentations. For example, if we have A → B⊛ in G,
then both A1 → B1 and A2 → B1 are in G′. These could lead
to spurious reduce/reduce conflicts. However, now that items are
identified in terms of productions from δ (e.g., A → B⊛) instead
of productions from δ′ (e.g., A1 → B1), these conflicts no longer
occur. Any remaining shift/reduce or reduce/reduce conflicts reflect
a conflict in the original grammar, G, and are not artifacts of the
translation to G′.

The last remaining source of ambiguity is the indentation-and-
lookahead set, L, which can grow infinitely. To resolve this we

change the representation of L from being a subset of N×(Σ× N)k

to being a subset of N along with an element of
(

Ī× Ī× Σ
)k

× Ī.
We write such an item as

[

A → X
⊲1
1 · · ·X⊲m

m •X
⊲m+1

m+1 · · ·X⊲n
n ;

I; (⊲̄1,1, ⊲̄1,2, a1) · · · (⊲̄k,1, ⊲̄k,2, ak) ⊲̄k+1]

This represents the item
[

A → X
⊲1
1 · · ·X⊲m

m •X
⊲m+1

m+1 · · ·X⊲n
n ;L

]

where S = Bi0 and

L =
{(

i, a
j1
1 · · · a

jk
k

)

| i ∈ I,

i ⊲̄1,1 l1, l1 ⊲̄2,1 l2, · · · , lk−1 ⊲̄k,1 lk,

j1 ⊲̄1,2 l1, j2 ⊲̄2,2 l2, · · · , jk ⊲̄k,2 lk,

lk ⊲̄k+1 i0}

The intuition behind this representation is best understood in
terms of the sort of parse tree that could lead to the item that is
trying to parse an A with lookaheads of a1 · · · ak. This situation
is depicted in Figure 6. Note that there are no terminals between
any of A, or a1, a2, · · · , ak, and in the general case, we consider

a node to be an ancestor of itself so some of C
l1
1 , C

l2
2 , · · · , C

lk
k or

Bi0 may actually be the same node.

The lookahead token a
j1
1 is in the lookahead only because A

shares with it the ancestor C1 at indentation l1. The ⊲̄1,1 and ⊲̄1,2
relations record the possible indentation relations between C1 and,

respectively, A and a
j1
1 . The second lookahead token a

j2
2 is in the

lookahead only because C1, the common ancestor of the item and
the first lookahead token, also shares with a2 the common ancestor
C2 at indentation l2. The ⊲̄2,1 and ⊲̄2,2 relations record the possible
indentation relations between C2 and, respectively, C1 and a2. And
so on, until we reach the final ancestor, Ck, at indentation lk. This
ancestor has a minimum indentation at which it can occur so we
use ⊲̄k+1 to record the indentation relation between Ck and B, the
start terminal.

The lookahead computation, Hk, that is defined in Section 5.3
must of course be modified to account for this representation. We
omit this because, while conceptually simple, its formal definition
is fairly intricate.
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Figure 6. The structure of lookahead tokens in a parse tree.

With this representation, the lookahead set is finitely repre-
sented so the only potentially infinite part remaining is the indenta-
tion set. However, as before, we can show that these sets are always
either the set N, a finite subset of N, or the union of a finite subset
of N with the set of all elements of N greater than j for some j ∈ N.
Indentation sets are thus finitely representable, and we have com-
pletely reduced the parsing algorithm to a finite representation.

We can now construct an LR(k) parser just as we constructed
the GLR parser at the end of Section 5.5. As before, to do this
we translate Algorithm 8 to use the new item set representation,
keep the indentation sets abstract while we elaborate the possible
item sets to form the states of the push-down automaton, and
at runtime augment the automaton states and stack entries with
concrete indentation sets.

5.7 Correctness of item set representation

We must consider carefully the correctness of the parsing algorithm
based on the item-set representation given in Section 5.6. At first
glance, the representation looks like it could lead to lookaheads
matching when they should not. Indeed, the following grammar of
variable references (i.e., ID) and do blocks with vertically aligned
statements shows how this can arise:

expr → ID>

expr → ’do’> |stmts|>

stmts → |expr|=

stmts → stmts= |expr|=

For example, consider the parse of the word ’do’1 ’do’4 ID7

ID2 which may come from the code:

do do x
y

Note that y does not align with either the second do or the x,
and thus this code should be rejected. Put another way, the valid
lookaheads when looking ahead at the ID for y but before re-
ducing x to expr are ID4, ID7, ’do’4, and ’do’7. The string
should thus be rejected since ID2, the token for y, is not in that
set. But the LR(1) lookahead set using the new representation is
{((≥,=, ID) >) , ((≥,=, ’do’) >)}. Since the current indenta-
tion is 7 and there exist l such that 7 ≥ l, 2 = l, and l > 0,
the string will not be immediately rejected.

This representation thus appears to over approximate the set of
indentations for a particular lookahead. This means that in the non-
deterministic choice at the end of Algorithm 8 there could be more
reductions possible than there should be. However, as we restrict
ourselves to LR(k) grammars, this turns out to not be a problem.

This is because there are only four cases where these spurious
reductions occur:

Case 1. There should be no reductions or shifts possible, but the
approximation makes one extra reduction possible.

In this case, the parser should reject the program, but will in-
stead reduce and continue parsing. However, this case happens
only when some other item set further up the stack also checks
the lookahead tokens. Though the string is not rejected imme-
diately, it will be rejected once we reach that point in the stack.
In our example, once x reduces to expr and then do x reduces
to an expr that finally reduces to stmts, the lookahead set
will be {((=,=, ID) >) , ((=,=, ’do’) >)}. Since the inden-
tation at that point is 4 but the next token is ID2, the parser will
reject the program. The program might not be rejected as soon
as we expect, but it is eventually rejected. This case may arise
even when the grammar is LR(k).

Case 2. There should be no shifts or reductions possible, but the
approximation makes two or more extra reductions possible.

The representation for lookaheads in Section 5.6 is designed
so that every lookahead word that it represents comes from
a valid parse. Thus if this representation generates multiple
possible reductions, then there is some string that would also
generate those multiple possible reductions with the original
representation in Algorithm 8. In that case, the grammar is
not LR(k), and the grammar should be rejected by the parser
generator.

Case 3. There should be one reduction or shift possible, but the
approximation makes one or more extra reductions possible.

The same reasoning applies as in the preceding case.

Case 4. There should be two or more reductions or shifts possible.

Then the original grammar is not LR(k), and the grammar
should be rejected by the parser generator.

This means that the representation in Section 5.6 is valid for any
grammar that is LR(k), and furthermore we can detect when a
grammar is not LR(k) by using this representation.

5.8 An efficiency consideration

Note that each item in an item set may have a different set of
indentations. For example, we may have an item set containing both
of the following two items:

[

A → •a>
b
=; I;u

]

[A → •a=
b
=; I;u]

Even if they start with the same indentation set, I , after reading an
a, the indentation sets for these items will be different from each
other. For the first item, the indentation set will be restricted to in-
dentations strictly greater than the indentation for a. For the second
item, the indentations will be restricted to indentations equal to that
of a. Thus, different items can have different indentation sets, and
a naive factoring (e.g., sharing I between items in an item set) is
insufficient. This does not preclude the possibility of a clever refac-
toring like the one done with the lookahead sets, but we have been
unable to find such a factoring that works in all cases. Nevertheless,
as a practical matter the following techniques seem to work well.

Observe that we need to keep only the indentation sets for
items before the closure is taken. Items generated by the closure
operation can be annotated with the ⊲̄ that can lead to them and this
value can be incorporated into the lookahead check. In addition,
when we can determine that some set of items will always have
the same indentation set, we can represent them using a common
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Figure 7. Benchmark results.

indentation set. These techniques reduce the number of indentation
sets that must be passed from one state to another, and based on
the experience implementing the Haskell parser in Section 6, the
resulting number of such sets is usually one.

6. Implementation

In order to verify the real-world practicality of this parsing tech-
nique, we modified the Happy parser generator [Marlow and Gill
2009] to support the parsing techniques presented in this paper.
The parser is LALR instead of LR(k), but the techniques shown
in Section 5 generalize straightforwardly to LALR. Note that this
implementation is only a prototype and is only intended for testing
the practical feasibility of parsing with IS-CFGs. In particular, no
significant effort was put into optimizing the performance of the
generated parser.

The Haskell parser from the haskell-src package [Marlow
et al. 2011] uses techniques for implementing layout similar to
those used by GHC. However, it is packaged as a standalone parser,
and this makes it easy to isolate for benchmarking purposes. This
parser was modified to use an IS-CFG instead of using shared
state between the lexer and parser. Both the modified and un-
modified versions were then run on the preprocessed source files
from the base package [bas 2012]. Two modules (GHC.Float
and GHC.Constants) could not be preprocessed due to missing
header files. Of the 178 remaining Haskell modules, 85 cannot
be parsed by the unmodified haskell-src parser due to syn-
tactic extensions, such as rank-2 types, that are not supported by
haskell-src. This left 93 source files that are parsable by the un-
modified parser. All of these files parsed and produced the same
parse tree when parsed using the IS-CFG based parser.

Figure 7 shows the parsing times of the modified parser rel-
ative to the unmodified parser when run on these files. These
benchmarks were compiled using GHC version 7.0.3 with the -O2,
-optl-static and -optl-pthread flags and were run on a 64-
bit, 3.2GHz Xeon running Ubuntu 12.04 with 4GB of RAM. Tim-
ing measurements were collected using Criterion version 0.6.0.1
with 1000 samples per benchmark.

Note that the haskell-src parser is designed to run both the
lexer and the parser simultaneously so they can share information
about indentations. It is difficult to separate the execution of the
parser from the execution of the lexer, so the lexing time is included
in the times for both that parser and the IS-CFG based one.

As expected, the IS-CFG based parser runs in approximately
linear time. It is geometrically on average 1.73 times slower than

the unmodified haskell-src parser. There is a slight upward trend
in the factor by which the IS-CFG based parser is slower than the
unmodified parser. This is primarily due to the fact that we are
graphing the ratio between the performance of the modified and
unmodified parsers and the unmodified parser has low-order perfor-
mance overheads that are more significant on small inputs. Given
that this is a prototype implementation with little optimization, the
fact that the IS-CFG version is only one to three times slower than
the standard haskell-src parser is promising. This overhead is
likely due to the manipulation of the indentation sets as the repre-
sentation of indentation sets is naive. Since in practice only certain
sorts of sets are common (e.g., singletons and the set N), an im-
proved version could optimize for these sorts of sets. In addition,
we could take advantage of the tokens with an indentation of infin-
ity by adding a fast path through the parser that short circuits the
indentation computations.

7. Related Work

The uulib parser library [Swierstra 2011] and the indents [An-
klesaria 2012] and indentparser [Kurur 2012] extensions to the
Parsec [Leijen and Martini 2012] parser library provide support
for indentation-sensitive parsing. To the best of our knowledge
there is no published, formal theory for the sort of indentation that
these parsers implement. They are all combinator-based, top-down
parsers and use some variation of threading state through a parser
monad to track the current indentation.

Hutton [1992] describes an approach to parsing indentation-
sensitive languages that is based on filtering the token stream. This
idea is further developed by Hutton and Meijer [1996]. In both
cases, the layout combinator searches the token stream for appro-
priately indented tokens and passes only those tokens to the com-
binator for the expression to which the layout rule applies. As each
use of layout scans the remaining tokens in the input, this can lead
to quadratic running time. Given that the layout combinator filters
tokens before parsing occurs, this technique also cannot support
subexpressions, such as parenthesized expressions in Python, that
are exempt from layout constraints. Thus, this approach is inca-
pable of expressing many real-world languages including ISWIM,
Habit, Haskell, and Python.

Erdweg et al. [2012] propose a method of parsing indentation-
sensitive languages by effectively filtering the parse trees generated
by a GLR parser. The GLR parser generates all possible parse trees
irrespective of layout. Indentation constraints on each parse node
then remove the trees that violate the layout rules. For performance
reasons, this filtering is interleaved with the execution of the GLR
parser when possible. Aside from the fact that they require a GLR
parser and thus generate parse trees that might not be used, a crit-
ical difference between their system and the one presented in this
paper is that their indentation constraints are in terms of the set
of tokens under a non-terminal whereas the system in this paper
uses constraints between non-terminals and their immediate chil-
dren. Thus, the two approaches look at the problem from different
perspectives. Erdweg et al. [2012] do not consider the question of
an LR(k) parser.

Brunauer and Mühlbacher [2006] take a unique approach to
specifying the indentation-sensitive aspects of a language. They use
a scannerless grammar that uses individual characters as tokens and
has non-terminals that take an integer counter as parameter. This
integer is threaded through the grammar and eventually specifies
the number of spaces that must occur within certain productions.
The grammar encodes the indentation rules of the language by
carefully arranging how this parameter is threaded through the
grammar and thus how many whitespace characters should occur
at each point in the grammar.
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While encoding indentation sensitivity this way is formally pre-
cise, it comes at a cost. The YAML specification [Ben-Kiki et al.
2009] uses the approach proposed by Brunauer and Mühlbacher
[2006] and as a result has about a dozen and a half different non-
terminals for various sorts of whitespace and comments. With this
encoding, the grammar cannot use a separate tokenizer and must
be scannerless, each possible occurrence of whitespace must be ex-
plicit in the grammar, and the grammar must carefully track which
non-terminals produce or expect what sorts of whitespace. The au-
thors of the YAML grammar establish naming conventions for non-
terminals that help manage this, but the result is still a grammar that
is difficult to comprehend and even more difficult to modify.

While this approach bears some similarity to the technique pro-
posed in this paper, a key difference is that their method uses the
parameters of non-terminals to generate explicit whitespace charac-
ters and thus incurs a significant accounting overhead in the design
of the grammar. On the other hand, the system presented in this pa-
per operates at a higher level, using the parameter to indicate the
column or indentation at which non-terminals and terminals should
occur. This is a subtle distinction, but it has a profound impact. As
shown in Section 3, layout rules are comparatively simple to encode
this way, and as shown in Section 5, this formalism is amenable to
traditional parsing techniques such as LR(k) parsing.

Note that none of the systems reviewed above present an LR(k)
parsing algorithm. They use either top-down parsers or, in the case
of Erdweg et al. [2012], a GLR parser.

8. Conclusion

This paper presents a grammatical formalism for indentation-
sensitive languages. It is both expressive and easy to use. We
derive provably correct GLR and LR(k) parsers for this formal-
ism. Though not shown here, CYK, SLR, LALR, GLL and LL(k)
parsers can also be constructed by appropriately using the key tech-
nique of factoring item sets. Experiments on a Haskell parser using
this formalism show that the parser runs between one and three
times slower than a parser using traditional ad hoc techniques for
handling indentation sensitivity. Improvements in the handling of
indentation sets may reduce this overhead. Using these techniques,
the layout rules of a wide variety of languages can be expressed
easily and parsed effectively.
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