
Flow-Sensitive Control-Flow Analysis in
Linear-Log Time

Michael D. Adams

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the School of Informatics and Computing,

Indiana University

October 2011

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

R. Kent Dybvig, Ph.D.

(Principal Advisor)

Amr Sabry, Ph.D.

Amal Ahmed, Ph.D.

Daniel Leivant, Ph.D.

September 30, 2011

ii

© 2011

Michael D. Adams

All Rights Reserved

iii

To my mother who instilled in me an insatiable desire for learning,
and to my father who taught me the fundamentals of computing

before I could even read.

iv

Acknowledgements

Many thanks go to my parents, David L. Adams and Mary C. Adams, for teaching me to

learn and fostering my interests at a young age.

Many thanks go to my advisor, R. Kent Dybvig, for guiding me through the doctoral

process and teaching me the ways of academia. A special thanks goes to him for asking

me to implement the optimization that started this line of research.

I’d also like to thank the other members of my doctoral committee: Amr Sabry, Amal

Ahmed, and Daniel Leivant. Each of them has been instrumental in my graduate education.

This dissertation is an extended version of Adams et al. [2011] and due thanks go to

my co-authors, Andy W. Keep, Jan Midtgaard, Matt Might, Arun Chauhan, and R. Kent

Dybvig, for the efforts they put into preparing that paper. Comments from Dan Friedman,

Jeremiah Willcock, Lindsey Kuper, Alex Hearn, and anonymous reviewers led to several

improvements in that paper’s presentation.

Many thanks go to Andy W. Keep who was a co-developer of the system described in

this dissertation. Of particular note is his work on benchmarking the system described in

this dissertation. Thanks also go to Jan Midtgaard for his work in developing and proving

the semantics of the system described in this dissertation. Thanks go to Matt Might for

introducing me to the fundamentals of control-flow analysis.

Thanks go to David S. Wise who was mentor to me in my first years as a graduate

student. His passion always made research enjoyable.

v

Acknowledgements

Thanks go to Daniel P. Friedman for introducing me to the field of programming lan-

guages and for his advice about graduate school, academia and writing.

Thanks go to Amr Sabry for the time he spent as my advisor and his willingness to

discuss my research ideas.

Thanks go to the PL Wonks for their support and forbearance with my early presenta-

tions of this material.

Thanks go to Roshan P. James and William E. Byrd for being friends and helping me

survive graduate school.

vi

Preface

History

The work that led to the research in this dissertation initially started as a summer project.

Dr. Dybvig, who is now my advisor, asked Andy Keep and me if we were interested in

developing an optimization that eliminates unnecessary dynamic type checks. This was

an optimization that he had wanted to add to Chez Scheme for some time. By default,

Chez Scheme includes type checks for most primitive operations even if it is impossible

for a particular type check to fail.1 These checks can be disabled but at the cost of run-

time type safety. The goal of the optimization is to eliminate those type checks that are

redundant or otherwise unnecessary but keep the type checks that are necessary to ensure

type safety. An example of this is the following expression.

(let ([x (read)])
(display (car x))
(display (cdr x)))

The type check in cdr will always succeed, because if x is not a pair, the type check in car

fails before cdr is called. Another example is the following.

(let ([x (read)])
(if (pair? x)

(car x)
(raise-error)))

1Chez Scheme will eliminate type checks when arguments to a primitive are constants or a function
application calls a known function. These cases may arise through other optimizations such as constant
propagation and inlining.

vii

Preface

Due to the explicit pair? check, the implicit type check in car always succeeds. The idea

of the optimization is to eliminate the unnecessary type checks in each of these expressions

and thus produce more efficient code.

Dr. Dybvig had one more requirement the optimization had to satisfy. The optimization

had to run in better than O
(
n2) time, where n is the size of the program being analyzed.

The reason for this requirement is a matter of design philosophy. An optimization ought

to not only produce efficient code but also process programs quickly. In addition, metapro-

gramming features such as macros, compiler compilers, or interface generators may result

in input programs that are large or unusually structured. These inputs can have sizes and

structures that no programmer would normally write. In order to process these programs

quickly, our optimization must not only be fast on large common-case inputs but also fast

on large worst-case inputs. In these cases, being fast in practice is no substitute for being

fast always.

While this requirement may result in a compiler having to forgo powerful optimizations if

they are costly to run, it ensures that every optimization runs quickly. Thus, the compiler

can afford to run more optimizations and still take less time than if it used more expensive

optimizations. Any one optimization might have difficulty handling a particular case, but

in the group of optimizations at least a few of them are likely to succeed. By having “lots

of little bullets” rather than one silver bullet, the overall result of optimization is likely to

be better [Peyton Jones et al., 1996].

This constraint on the running time of the optimization was an essential driving force

for the research. Optimization and static-analysis research often focuses on improving

the precision of the analysis or optimization at the cost of running time. When running

time is considered, it is often only in terms of the common case. Worst-case scenarios

are dismissed as “code that no programmer would ever write.” Requiring the asymptotic

bound on compilation time gave a fresh perspective. Rather than aiming for precision in

viii

Preface

the worst case and efficiency in the common case, we aimed for efficiency in the worst case

and precision in the common case.

Lessons

A number of lessons and techniques for research arose through this process, and I would

like to share these in hopes they might help other students pursuing a research career.

Look where others are not. The vast majority of research on program analysis focuses

on improving the precision of the analysis. While most research gives at least a passing

nod to common-case efficiency, worst-case asymptotic performance is largely ignored. By

making asymptotic performance a primary goal, I found results that others had not.

Take a solved problem and add an asymptotic bound. Though problems like control-

flow analysis (CFA) are well studied in terms of precision, their asymptotic behavior is

often analyzed only after the fact. That is to say, research often focuses first on improving

the precision of the analysis, and only afterwards attempts to improve the asymptotic

performance. The natural result is an analysis with poor asymptotic performance. An

alternative is to focus primarily on asymptotic performance and only increase the precision

when doing so does not break a predetermined asymptotic bound. The result is likely to

be novel, since most research attacks the problem from the other direction. The result is

also likely to be non-trivial as a fair amount of algorithmic work is likely to be needed in

order to obtain the desired asymptotic bound. Examples of these sorts of results include

the work on sub-0CFA [Ashley and Dybvig, 1998], CP0 [Waddell and Dybvig, 1997], and

the research in this dissertation.

ix

Preface

Take a solved problem and scale it up to a real-world implementation. Many elegant

solutions exist for idealized languages, but real-world problems often have interesting con-

straints not present in an idealization. For example, Scheme has case-lambda, mutable

variables, and other language features not usually present in idealized systems. If we do

research in an abstract, idealized setting, then it is tempting to omit such forms if they

lead to complications. By working on a real-world implementation, we are forced to deal

with these hard cases, and these hard cases can lead to novel and creative solutions.

Look for real-world problems with interesting constraints. In the case of this research,

solving the problem in better than O
(
n2) time served as the constraint that lead to the

most interesting results. In the creative arts it is widely recognized that boundaries and

constraints can help stimulate creativity and make creativity easier than it would be in

their absence. Likewise, real-word constraints and the hard cases that come with them can

help guide research. They provide both a metric by which the research may be judged and

an assurance that the research is relevant to the worlds needs. At this point in computer

science, it is hard to find topics that are not already well researched in an idealized setting,

but many real-world problems have yet to be solved.

Have a fallback result. Hard problems that are not already solved may be impossible

to solve. Thus, when starting a line of research, it is helpful to have fallback solutions

that may not be perfect but do partially solve the problem. For example, early in this

research many imperfect solutions were considered such as bounding the span over which

certain types of information are collected. These solutions lead to analyses that were not

as precise as desired, but were both sound and novel. While in the end these solutions

were not used, having them available provided the freedom to dare approach the harder,

more precise version of the analysis. If the harder analysis did not work out, the fallback

solutions were always available.

x

Preface

Have desiderata that can be sacrificed. One has to be careful about the constraints

imposed on a problem. It is easy to over constrain a problem and make it impossible

to solve. To avoid this, treat some constraints as desiderata rather than requirements.

For example, in the present research, soundness and performance were hard requirements.

However, though precision of the analysis was desired, we were willing to sacrifice precision

in order to gain performance. This was especially useful for features like mutable variables

where we had to give up on collecting restrictive information (see Section 6.7) in order to

maintain our desired time bound. This gave up some precision, but allowed the analysis

to achieve the desired performance.

xi

Michael D. Adams

Flow-Sensitive Control-Flow Analysis in Linear-Log Time

The flexibility of dynamically typed languages such as JavaScript, Python, Ruby, and

Scheme comes at the cost of run-time type checks. Some of these checks can be eliminated

via control-flow analysis. However, traditional control-flow analysis (CFA) is not ideal for

this task as it ignores flow-sensitive information that can be gained from dynamic type

predicates, such as JavaScript’s instanceof and Scheme’s pair?, and from type-restricted

operators, such as Scheme’s car. Yet, adding flow-sensitivity to a traditional CFA worsens

the already significant compile-time cost of traditional CFA. This makes it unsuitable for

use in just-in-time compilers.

In response, this dissertation presents a fast, flow-sensitive type-recovery algorithm based

on the linear-time, flow-insensitive sub-0CFA. The algorithm has been implemented as an

experimental optimization into Chez Scheme compiler, where it has proven to be effective,

justifying the elimination of about 60% of run-time type checks in a large set of bench-

marks. The algorithm processes on average over 100,000 lines of code per second and scales

well asymptotically, running in only O(n logn) time. This compile-time performance and

scalability is achieved through a novel combination of data structures and algorithms.

R. Kent Dybvig, Ph.D.

(Principal Advisor)

Amr Sabry, Ph.D.

Amal Ahmed, Ph.D. Daniel Leivant, Ph.D.

xii

Contents

1. Introduction 1

2. CFA 5

2.1. CFA . 5

2.1.1. 0CFA for the λ-calculus . 5

2.1.2. 0CFA for the extended λ-calculus . 8

2.2. Flow-graph implementation of CFA . 12

2.3. Top and escaped functions . 14

2.4. Sub-0CFA . 15

2.5. Non-function types . 18

3. Flow Sensitivity 19

3.1. Flow-sensitivity for unconditional observers 21

3.2. Flow-sensitivity for conditional observers . 24

3.3. Flow-graph representation of flow-sensitivity 29

4. Fast Flow Sensitivity 31

4.1. Context skipping . 33

4.2. Context skipping and reachability . 42

4.3. Selecting context skips . 44

xiii

Contents

4.4. Caching context skips . 47

4.5. Algorithm Summary . 54

5. Example 58

5.1. Code . 58

5.2. Abstract syntax tree . 58

5.3. Value graphs . 61

5.4. Context cache . 64

5.5. Variables . 66

5.5.1. Flow graph for x . 66

5.5.2. Flow graph for y . 70

5.5.3. Flow graph for z . 74

5.5.4. Other variables . 77

5.6. Result . 77

6. Implementation 79

6.1. Implementation structure . 79

6.2. Implementation notes . 80

6.3. Order of evaluation . 80

6.4. Local binding . 82

6.5. Lambda . 83

6.6. Smart primitives . 84

6.7. Mutable variables . 85

7. Benchmarks 87

7.1. Effectiveness . 87

7.2. Efficiency . 89

xiv

Contents

8. Related Work 94

8.1. CFA and CFA-based type recovery . 94

8.2. Type recovery based on type inference . 95

8.3. Recent type-recovery applications . 96

8.4. Other related work . 97

9. Future Work 99

9.1. User-defined types . 99

9.2. Objects and rich types . 100

9.3. Asymptotic improvements . 101

9.4. Loops and general control flow . 102

9.5. Static single assignment form . 102

9.6. Sub-kCFA . 103

9.7. Generalized skipping functions . 103

9.8. Backwards abstract interpretation . 105

10.Conclusion 107

A. Source Code Overview 109

A.1. Using the code . 109

A.2. Algorithm . 110

A.2.1. Preprocessing . 110

A.2.2. Flow-graph construction . 111

A.2.2.1. Environmental flow-graph nodes 111

A.2.2.2. Value flow-graph nodes . 112

A.2.3. Post-processing . 113

xv

Contents

A.3. Data types . 113

A.3.1. Trex records . 113

A.3.2. Abstract syntax trees . 114

A.3.3. Flow graphs . 115

A.3.4. AST flow graphs . 117

A.3.5. Identifiers . 117

A.3.6. Types . 117

A.3.7. Environmental flow functions . 118

A.4. Auxiliary code . 118

A.4.1. datatype.ss . 118

A.4.2. records-io.ss . 120

A.4.3. define-ignored.ss . 120

A.4.4. iota.ss . 121

A.4.5. safe-forms.ss . 121

A.4.6. syntax-helpers.ss . 121

A.5. Third-party code . 121

A.5.1. srfi-39.ss . 121

A.5.2. match.ss . 122

B. Source Code 123

B.1. Software license . 123

B.2. Algorithm . 124

B.2.1. Preprocessing . 133

B.2.2. Graph construction . 144

B.2.3. Post-processing . 162

xvi

Contents

B.3. Data types . 166

B.3.1. Abstract syntax trees . 166

B.3.2. Flow graphs . 171

B.3.3. Types . 179

B.4. Auxiliary code . 197

B.5. Third-party Code . 204

B.5.1. SRFI 39 . 204

B.5.2. Match . 205

Bibliography 222

Indexes 231

Index of Source Files . 231

Index of Functions . 232

Index of Macros . 239

Index of Record Types . 241

Vita 242

xvii

List of Figures

2.1. Concrete semantics of λ-calculus . 6

2.2. 0CFA constraint rules . 7

2.3. Concrete semantics for the extended λ-calculus 9

2.4. Constraint rules for extended λ-calculus . 11

2.5. Flow graphs in 0CFA . 13

2.6. Flattened lattice of functions . 17

3.1. Common definitions . 21

3.2. Definitions for unconditional observers . 24

3.3. Rules for unconditional observers . 25

3.4. Predicate aware definitions . 26

3.5. Predicate aware rules . 27

3.6. Flow graphs for flow-sensitive 0CFA . 29

4.1. True and false expression guards . 33

4.2. Context skipping function . 37

4.3. Graph form of canonical skipping functions 42

4.4. Example AST for skipping context selection 45

4.5. Example of quadratic VC,e calculation . 47

4.6. Layered structure of the VC,e cache . 49

xviii

List of Figures

4.7. A perfectly balanced skip list . 51

4.8. Skip lists sharing a tail . 52

4.9. A Myers stack . 52

4.10. Example AST . 56

4.11. Example AST with skips . 56

4.12. Worst case for Myers stacks . 57

5.1. Example expression . 59

5.2. Abstract syntax tree . 60

5.3. Value flow . 62

5.4. Cache of contexts . 65

5.5. Context skipping for x . 67

5.6. Flow graph for x . 69

5.7. Context skipping for y . 71

5.8. Flow graph for y . 72

5.9. Context skipping for z . 75

5.10. Flow graph for z . 76

6.1. Rules for let and letrec . 81

7.1. Average percent of type checks removed . 88

7.2. Percent of type checks removed . 91

7.3. Percent of type checks removed . 92

7.4. Source node count versus analysis time . 93

9.1. Lattice for rich types . 100

xix

1. Introduction

Dynamically typed languages such as JavaScript, Python, Ruby, and Scheme are flexible,

but this flexibility comes at the cost of type checks at run time. This cost can be reduced via

type-recovery analysis [Shivers, 1991], which attempts to discover variable and expression

types at compile time and thereby justify the elimination of run-time type checks.

Since these are higher-order languages in which the call graph is not static, the type-

recovery analysis generally must be a form of control-flow analysis [Shivers, 1988]. A

control-flow analysis (CFA) tracks the flow of function values to call sites and builds the

call graph even as it tracks the flow of other values to their use sites.

To maximize the number of checks removed, the analysis must take evaluation order into

account. That is, it must be flow sensitive1 [Banning, 1979]. In the following expression,

even a flow-insensitive control-flow analysis can determine that x is a pair and thus car

need not check that x is a pair.

(let ([x (cons e1 e2)]) (car x)) (1.1)

To make a similar determination in the following expressions, however, evaluation order

must be taken into account as the read function can return any type of value.

(let ([x (read)]) (begin (cdr x) (car x))) (1.2)

(let ([x (read)]) (if (pair? x) (car x) #f)) (1.3)

1This use of the term flow sensitive agrees with the original definition of Banning [1979], in which an
analysis takes order of evaluation into account, as well as with a glossary definition of Mogensen [2000], in
which separate results are computed for distinct program points. Our analysis might also be considered
path sensitive, depending on the definition of path sensitivity used.

1

1. Introduction

Because it does not take order of evaluation into account, a flow-insensitive analysis treats

all references the same. On the other hand, a flow-sensitive analysis can determine that

(car x) is reached in Example 1.2 only after passing the implicit pair check in (cdr x)

and in Example 1.3 only when the explicit pair? check succeeds. Thus, the implicit pair

check in car can be eliminated in both expressions.

In general, the analysis cannot eliminate all type checks. It can eliminate only those

that are redundant or otherwise unnecessary to preserve the semantics of the program.

In Example 1.2, the type check in cdr must be preserved in order to preserve the error

semantics of the expression, but the type check in car does not affect the semantics of the

expression and is thus redundant.

A type-recovery analysis is used to optimize code and not to statically verify the type

soundness of code. Thus, the analysis is not allowed to reject a program even if the program

might be considered not well typed. Also, the analysis must handle the complete language

“as is” and cannot require type annotations or other assistance from the programmer.

On the other hand, being used solely for optimization simplifies matters in other ways.

Since the analysis never rejects a program, no error messages need be displayed to the

user. Likewise, an optimization has the option of using conservative approximations and

heuristics that would not be appropriate in a type checker. This freedom to conservatively

approximate gives us the freedom to adjust the analysis in ways not available to a type

checker and thus reduce the cost of the analysis or increase its effectiveness.

This dissertation presents a flow-sensitive control-flow analysis that runs in linear-log

time and is suitable for use in a type-recovery optimization. Because the analysis is intended

to justify type recovery in a fast production compiler [Dybvig, 2010], it is based on sub-

0CFA [Ashley and Dybvig, 1998], a linear-time, flow-insensitive variant of 0CFA [Shivers,

1988]. The analysis uses a novel combination of data structures and algorithms to add flow

sensitivity to sub-0CFA at the cost of only an additional logarithmic factor.

2

1. Introduction

The analysis has been implemented as an experimental optimization for the commercial

Chez Scheme compiler, where it has proven to be effective and justifies the elimination of

about 60% of run-time type checks. The algorithm has also proven to be fast, processing

over 100,000 lines of code per second on average. Furthermore, since it runs in O(n logn)

time, it scales well to large input programs.

Since this analysis is to be used by an optimization in an industrial compiler, the per-

spective taken with this research is to favor performance over precision. By having “lots

of little bullets” rather than one silver bullet, the overall result of optimization is likely to

be better [Peyton Jones et al., 1996]. Rather than aiming for precision in the worst case

and efficiency in the common case, the analysis aims for efficiency in the worst case and

precision in the common case.

Of course, the optimization must still preserve the semantics of the program being op-

timized. Thus, the analysis must conservatively approximate the behavior of the program

being optimized. For example, both the order of evaluation and the behavior of errors must

be preserved. Nevertheless, as long as the analysis computes a conservative approximation,

there is some flexibility in how much it approximates.

This dissertation presents two major research results. First, it presents a control-flow

analysis that has a novel and strong form of flow sensitivity that elegantly handles predi-

cates and is suitable for use in type recovery. This analysis takes O
(
n2) time if implemented

naïvely. Second, this dissertation presents an optimized algorithm that computes the same

analysis but takes only O(n logn) time.

In brief terms, the analysis handles predicates by associating two environments with the

result of each expression in addition to the return value that traditional CFA associates

with each expression. While associating a single environment with each expression is a

known technique [Banning, 1979] for implementing flow sensitivity, generalizing this to two

environments allows us to make the analysis predicate-aware. One environment records

3

1. Introduction

the types of variables for when a predicate returns true, while the other records the types

of variables for when the predicate returns false.

A naive implementation of this using standard flow-graph techniques would be quadratic

in the size of the program being analyzed. This research shows how to perform this in

only O(n logn) time by a combination of novel techniques and the careful engineering of

known (but slightly obscure) techniques. First, this involves computing skipping functions

to allow values to bypass the usual threading of environments through the program and

thus more efficiently flow values to the locations where they are needed. Second, these

skipping functions are stored in a specialized cache that allows efficient computation and

re-computation of these skipping functions. Finally, the analysis carefully chooses where

to use skipping functions versus the standard environment-flow rules in order to achieve

the O(n logn) time bound.

The remainder of this dissertation reviews the semantics and implementation of 0CFA

and sub-0CFA (Chapter 2), describes the traditional technique for implementing flow sen-

sitivity (Chapter 3), describes a novel, efficient technique for implementing flow sensitiv-

ity (Chapter 4), works through examples of this technique (Chapter 5), discusses prac-

tical considerations in a real-world implementation (Chapter 6), presents benchmark re-

sults (Chapter 7), reviews related work (Chapter 8), outlines directions for future research

in this area (Chapter 9), and finally concludes (Chapter 10).

4

2. CFA

This chapter reviews two relevant forms of control-flow analysis, Shivers’s 0CFA and Ash-

ley’s sub-0CFA. It also discusses their implementations in terms of flow graphs, how top

and escaped values are handled, and the representation of non-function types. Readers

familiar with control-flow analysis may wish to skip forward to Chapter 3.

2.1. CFA

2.1.1. 0CFA for the λ-calculus

Constraint rules that define 0CFA on the call-by-value λ-calculus are presented in Fig-

ure 2.2. The operational semantics of the λ-calculus is shown in Figure 2.1.

The operational semantics is mostly standard but differs from standard semantics in that,

when functions are invoked, the app(v0 v1, ρ) :: κ context is placed on the stack instead of

κ. This records the origin of the function call and makes the semantics more closely parallel

the constraint rules in Figure 2.2, which implicitly track function-call origins in order to

determine the output values of function calls. Though a formal proof of the soundness of

the constraint rules is not included in this dissertation, such a proof is simplified by the

extra context and the parallels it causes between the semantics and the constraint rules.

The analysis stores a reachability flag, JeKin, for each subexpression of the program being

analyzed. The flag is > if the expression is reachable and ⊥ otherwise.

5

2. CFA

Expressions: e ∈ Exp = x | λx.e | e e
Signatures: s ∈ State = (Exp × Env ×K) + (K ×Val)

ρ ∈ Env = Var ⇀ Val
κ ∈ K = stop | app(� e1, ρ) :: κ | app(v �, ρ) :: κ | app(v0 v1, ρ) :: κ
v ∈ Val = [λx.e; ρ]

Rules (In): 〈x, ρ, κ〉 → 〈κ, v〉 where v = ρ(x)
〈λx.e, ρ, κ〉 → 〈κ, [λx.e; ρ]〉
〈e0 e1, ρ, κ〉 → 〈e0, ρ, app(� e1, ρ) :: κ〉

Rules (Out): 〈app(� e1, ρ) :: κ, v0〉 → 〈e1, ρ, app(v0 �, ρ) :: κ〉
〈app(v0 �, ρ) :: κ, v1〉 → 〈e, ρ′[x 7→ v1], app(v0 v1, ρ) :: κ〉

if v0 = [λx.e; ρ′]
〈app(v0 v1, ρ) :: κ, v〉 → 〈κ, v〉

Figure 2.1.: Concrete semantics of λ-calculus

In addition, for each expression, a flow variable JeKout records the abstract value that

flows from the expression, i.e., a subset of the lambda terms that may be returned by the

expression. For example, the lambda rule says that if λx.e is reachable, the result of that

expression includes an abstract value representing the lambda.

For Bool, the w relation is the standard partial order where > w ⊥. For V̂al, the w

relation is the standard partial order over power sets.

All subexpressions are implicitly labeled, and all variables are uniquely alpha-renamed.

Thus, the analysis distinguishes duplicate expressions and variable names.

The callin rule ensures that the expression in the function position of an application

is reachable if the application is reachable. Likewise the callmid rule ensures that the

expression in the argument position of an application is reachable if the function position

of the application returns a value other than ⊥.

6

2. CFA

Contexts: C ∈ Ctxt = � | (� e1) | (e0 �) | (λx.�)
Signatures: K ∈ Exp→ Ctxt

JeKin ∈ Bool {- Whether e is reachable -}
JeKout ∈ V̂al {- What e evaluates to -}

r̂ ∈ Bool = {⊥,>}
v̂ ∈ V̂al = ℘(L̂am)

L̂am = {λx1.e1, λx2.e2, λx3.e3, . . . }

Jλx.eKin w > lambda
Jλx.eKout w {λx.e}

Je0 e1Kin w r̂ callin

Je0Kin w r̂

Je0Kout w {v̂0} K(e0) = (� e1)
callmid

Je1Kin w >

Je0Kout w {λx.eλ} Je1Kout w {v̂1} K(e1) = (e0 �)
callfun

JeλKin w > JxKout w {v̂1}

Je0Kout w {λx.eλ} Je1Kout w {v̂1} JeλKout w {v̂} callout

Je0 e1Kout w {v̂}

Figure 2.2.: 0CFA constraint rules

7

2. CFA

The callmid and callfun rules use K(e), which returns the source context1 of e. These

contexts are single-layer contexts instead of the more usual multilayer contexts, but for

specifying the constraint rules only a single layer is needed. When multilayer contexts are

needed, they are represented by the juxtaposition of contexts.

The callfun rule applies when a lambda flows to a subexpression that is contextually

located inside an application, i.e., K(e1) = (e0 �), and a value flows to the operand of the

expression, e1. When these two conditions hold, the callfun rule makes the body of the

invoked lambda reachable and the actual argument flow to the formal parameter.

Finally, provided that the argument of a application returns, i.e., Je1Kout w {v̂1}, the

callout rule takes any lambda that flows to the function position and makes its return

value flow to the result of the application. This condition on e1 prevents function calls

from returning a value when either e0 or e1 diverge. This reflects the fact that, in those

cases, the function is never called and thus cannot return.

To solve these constraints rules for a particular program, the analysis initially assigns

⊥ to each JeKin and the empty set to each JeKout. Then it iteratively uses the constraint

rules to update JeKin and JeKout until they converge to a solution. In the process, JeKin and

JeKout monotonically climb the lattices for Bool and V̂al respectively [Nielson et al., 1999].

2.1.2. 0CFA for the extended λ-calculus

In order to bring the language in Figure 2.1 in line with the core language of Scheme, it is

extend in Figure 2.3 with constants, primitives, sequencing, and conditionals. Again, the

semantics is standard for a language with these features. Note that the expression η(o, v1)

returns the result of applying a primitive function to a value.

1As the analysis in Figure 2.2 is extended and optimized throughout the rest of this dissertation, it will
need an explicit representation of contexts to reason about. Hence for presentational purposes the
contexts of expressions in the above 0CFA differ from more traditional presentations [Nielson et al.,
1999].

8

2. CFA

Expressions: e ∈ Exp = . . . | c | e; e | if e e e
c ∈ Const = #f | n | o | . . .
n ∈ Num = 0 | 1 | 2 | . . .
o ∈ Prim = {pair?, car, cdr, . . . }

Signatures: κ ∈ K = . . . | seq(�; e1, ρ) :: κ | seq(v0;�, ρ) :: κ
| cond(if � e1 e2, ρ) :: κ | cond(if v0 � e2, ρ) :: κ
| cond(if v0 e1 �, ρ) :: κ

v ∈ Val = . . . | c
η ∈ Prim ×Val → Val

Rules (In): 〈c, ρ, κ〉 → 〈κ, c〉
〈e0; e1, ρ, κ〉 → 〈e0, ρ, seq(�; e1, ρ) :: κ〉

〈if e0 e1 e2, ρ, κ〉 → 〈e0, ρ, cond(if � e1 e2, ρ) :: κ〉
Rules (Out): 〈app(v0 �, ρ) :: κ, v1〉 → 〈κ, v〉 if v0 = o ∧ v = η(o, v1)

〈seq(�; e1, ρ) :: κ, v0〉 → 〈e1, ρ, seq(v0;�, ρ) :: κ〉
〈seq(v0;�, ρ) :: κ, v1〉 → 〈κ, v1〉

〈cond(if � e1 e2, ρ) :: κ, v0〉 →

〈e1, ρ, cond(if v0 � e2, ρ) :: κ〉

if v0 6= #f
〈e2, ρ, cond(if v0 e1 �, ρ) :: κ〉

if v0 = #f

〈cond(if v0 � e2, ρ) :: κ, v1〉 → 〈κ, v1〉
〈cond(if v0 e1 �, ρ) :: κ, v2〉 → 〈κ, v2〉

Figure 2.3.: Concrete semantics for the extended λ-calculus

9

2. CFA

The 0CFA for this language is in Figure 2.4. All of the rules from Figure 2.2 still apply

except that some of the signatures have changed and the callout rule changes to account

for primitive operators.

The set of types is enriched by adding a fixed set of primitive types, e.g., INT , PAIR,

etc., as well as for primitive procedures, e.g., pair?, car, etc., to the V̂al lattice. The

analysis splits abstract values into a function part and a non-function part to simplify the

development of sub-0CFA in Section 2.4. Nevertheless, we notationally treat abstract values

as sets. For example, {INT ,PAIR, λx.e} is understood to mean 〈{INT ,PAIR}, {λx.e}〉.

Now that the analysis has primitive functions in addition to lambda functions, the

callout rule is refactored. It uses the RET function to determine the return type of a

function. When the function is a lambda term, the result is exactly the same as before,

but now the callout rule also handles primitive functions that are not lambda terms. For

example, the return value of car is >, the top element of the V̂al lattice.

The const rule handles constants by using the ABS function, which projects from

concrete constants to abstract values.

Sequencing, i.e., e0; e1, is handled by the seqin, seqmid and seqout rules. seqin makes

the first expression of a sequence reachable if the sequence is reachable. seqmid makes the

second expression of a sequence reachable if the first expression of the sequence returns.

Finally, seqout uses the result of the second expression of the sequence as the result of the

entire sequence.

Conditionals, i.e., if e0 e1 e2, are handled by the ifin, ifmid and ifout rules. As with

sequencing, ifin makes the test of a conditional reachable if the entire conditional is reach-

able. Similar to seqmid, the ifmid rule makes the consequent and alternative reachable if

the test returns either true or false values respectively. It uses >t and >f , which represent

the sets of all true and all false values respectively. Finally, in ifout, the result of the

conditional is obtained from the join of the results of the consequent and alternative.

10

2. CFA

Contexts: C ∈ Ctxt = . . . | (�; e1) | (e0;�) | (if � e1 e2) | (if e0 � e2) | (if e0 e1 �)

Signatures: v̂ ∈ V̂al = F̂un × ℘(T̂ag) f̂ ∈ F̂un = ℘(L̂am + P̂rim)
t̂ ∈ T̂ag = {FALSE ,TRUE , INT ,FLOAT ,PAIR, . . . }

L̂am = {λx1.e1, λx2.e2, λx3.e3, . . . }

o ∈ P̂rim = {pair?, car, cdr, . . . }

>t = V̂al\{FALSE} >f = {FALSE}
ABS ∈ Const→ V̂al

ABS(#f) = {FALSE}
ABS(n) = {INT}

. . .

RET ∈ V̂al → V̂al
RET (λx.e) = JeKout
RET (car) = >

RET (pair?) = {FALSE, TRUE}
. . .

Je0Kout w {f̂} Je1Kout w {v̂1} callout

Je0 e1Kout w RET (f̂)
JcKin w > const

JcKout w ABS(c)
Je0; e1Kin w r̂ seqin

Je0Kin w r̂
Je0Kout w {v̂0} K(e0) = (�; e1)

seqmid

Je1Kin w >
seqout

Je0; e1Kout w Je1Kout
Jif e0 e1 e2Kin w r̂ ifin

Je0Kin w r̂
Je0Kout w v̂0 K(e0) = (if � e1 e2)

ifmid

Je1Kin w > if v̂0 u >t 6= ⊥ Je2Kin w > if v̂0 u >f 6= ⊥

ifout

Jif e0 e1 e2Kout w Je1Kout t Je2Kout

Figure 2.4.: Constraint rules for extended λ-calculus

11

2. CFA

2.2. Flow-graph implementation of CFA

In order to solve the constraint rules for CFA efficiently, it is common to represent the

problem as a flow graph [Jagannathan and Weeks, 1995, Heintze and McAllester, 1997b]

with graph nodes denoting the flow variables JeKin and JeKout and directed edges denoting

the flow of abstract values from one node to another. Each node in the flow graph has an

associated value and an associated function. A node is stable if the value associated with it

equals the result of applying the function associated with the node to the values associated

with the nodes that have edges coming into the node. The goal of the flow graph is to find

values to associate with each node such that every node in the graph is stable.

As a convention when we say that we compute a type or other phrasing to that effect,

we often mean that we construct a flow-graph node that computes the type.

To compute a solution to a flow graph, we use the standard technique. We impose a

finite lattice over the types of values associated with each node. Initially, we use ⊥ for

the value of each node. That is, we use the bottom element of the lattice for a particular

node’s initial type.

Then, a standard work-list algorithm iterates over the graph until convergence. Nodes

in the work list may not be stable and may have stale values that need to be updated

based on changed inputs to the node. Initially, all nodes are on the work list. A node

is removed from the work list and a new value for its output is calculated based on the

values of its inputs. If the output value changes, any nodes that connect to edges coming

out of the current node are placed on the work list since they may not be stable. The

algorithm continues selecting nodes form the work list and recalculating nodes until the

graph converges and no unstable nodes remain.

For 0CFA augmented with reachability, an edge into an expression node models reach-

ability r̂, whereas an edge out of an expression node models possible result values, v̂, as

12

2. CFA

r̂

��_ _�
�

�
�_ _e

����
v̂

(a) A general flow graph node

��_ _�
�

�
�

_ _e1BC
GFT?
��

@A
EDF?

��_ _�
�

�
�_ _e2@A
=< ����

_ _�
�

�
�_ _e3BC

?>����
t

����

_ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _

(b) A composite flow graph

Figure 2.5.: Flow graphs in 0CFA

depicted in Figure 2.5a. Thus, to construct a flow graph for the rules in Figure 2.2 or

Figure 2.4, the analysis constructs a node for each JeKin and each JeKout. The constraint

rules then dictate the function for computing the output from the inputs. Thus, if the

flow graph is stable, the constraint rules are satisfied. The solution thus found is also the

minimal solution to the constraint rules, but that proof is omitted here. The interested

reader is referred to Jagannathan and Weeks [1995].

For example, the flow graph for the expression (if e1 e2 e3) contains nodes for the

reachability and result values of the if, e1, e2, and e3 expressions. This is depicted schemat-

ically in Figure 2.5b. The expressions e1, e2, and e3 are drawn in outline to indicate they

may contain other nodes internal to those expressions. The expression e1 is reachable if

and only if the if is reachable. Thus, there is an edge from the input of the if to e1.

Likewise e2 and e3 are reachable if and only if e1 outputs a true or false value respectively.

Thus, there are edges from e1 to e2 and e3 filtered by T? and F? which test if the output

value contains true or false values respectively. Finally, the output node of the if computes

the lattice join (t) of the output nodes of e2 and e3.

13

2. CFA

A crucial property is that, under appropriate circumstances, flow graphs quickly converge

to a solution. If (1) the values that flow through a graph are members of a finite-height

lattice, L, (2) the output value of each node moves only monotonically up the lattice, and

(3) the output value of a node can be computed in constant time from the input values,

then the lattice will converge in O(|L| (|E|+ |N |)) time where |L|, |E| and |N | are the

height of L, the number of edges, and the number of nodes in the graph. Thus, when

determining the asymptotic performance of a flow graph, we are most directly concerned

with the number of nodes created as this, along with the lattice height and the time to

recompute a single node, determines the time it takes for the flow graph to converge.

For CFA, a minor modification has to be made to the usual flow-graph algorithm. The

initial graph contains no edges between functions and call sites, so the algorithm adds new

edges to the flow graph as it discovers connections between functions and call sites. This

does not affect convergence, however, since the maximum number of edges is bounded, and

edges are added but never removed.

In the worst case, the algorithm adds an edge between each of O(n) call sites and each of

O(n) functions in a program of size n, resulting in a graph with O
(
n2) edges. 0CFA uses a

lattice over ℘(L̂am), which has a height equal to the number of functions in the program.

The lattice has height O(n) and the graph has size O
(
n2), so a naively implemented 0CFA

takes O
(
n3) time to compute. Slightly faster techniques are known for computing 0CFA,

but they still take O
(
n3/ logn

)
time [Melski and Reps, 2000, Chaudhuri, 2008, Midtgaard

and Van Horn, 2009].

2.3. Top and escaped functions

If a CFA is operating on a program that contains free variables, such as variables imported

from libraries outside the scope of the analysis, the analysis does not know anything about

14

2. CFA

the values of those variables. This is handled by adding a top, >, element to the lattice.

This > denotes an unknown function [Shivers, 1988] and is used for the value of free

variables. It represents not only any function from outside the scope of the analysis but

also includes any function inside the scope of the analysis. This is to say, it subsumes all

other functions in L̂am.

Likewise, if a function is assigned to a free variable or exported to a library outside the

scope of the analysis, the function may be called in locations unknown to the analysis.

That the analysis has lost track of all the places where the function flows is represented by

marking the function as escaped.

Top values and escaped functions can cause more top values and escaped functions.

First, if the function position of a function call is >, the return value of the function call

is >, and the arguments escape, since they are passed to an unknown function. Second, if

a function escapes, its formal parameters become >, and its return value escapes, since it

might flow to places outside the scope of the analysis. Finally, when a set of functions is

joined with a > value, the result is >, and since a > value does not explicitly mention the

functions combined into it, those functions are marked as escaped.

This handling of > and escaped functions is standard and is assumed throughout the

rest of this dissertation.

2.4. Sub-0CFA

0CFA is often extended upwards to 1CFA, 2CFA or the general kCFA, which compute

separate abstract values for different calling contexts of an expression. However, even

the simplest of these, 1CFA, is EXPTIME complete [Van Horn and Mairson, 2008]. Fur-

ther, even without flow sensitivity, the best known 0CFA algorithm takes O
(
n3/ logn

)
time [Midtgaard and Van Horn, 2009]. This is unlikely to be improved given the known

15

2. CFA

equivalence between 0CFA and 2NPDA [Heintze and McAllester, 1997a, Aho et al., 1968].

Thus, since we are aiming for O(n logn) time, we do not start with 0CFA. Instead we

start with sub-0CFA, which takes only O(n) time [Ashley and Dybvig, 1998]. Sub-0CFA is

based on the observation that it is always a sound, conservative approximation to replace

an abstract value, v̂1, with any other abstract value, v̂2, provided that v̂2 approximates v̂1.

That is to say v̂2 w v̂1. The general form of this technique is called widening. Between

the steps in the iteration of the flow graph, the abstract values on each node are examined

and a widening operator is applied to these value. The widening operator selects the new

abstract values that are then used as the new values for each flow-graph node. In theory,

the widening operator can be any function so long as it only ever moves values up their

corresponding lattice. The operator can even depend on correlations between values at

different nodes. However, in practice we want to choose an operator that makes the flow

graph converge quickly and that is fast to compute.

A particularly common and useful special case of this calculates the new value for each

node independently of every other node. In this case, the formalism can be simplified by

doing away with the widening operator and instead restricting abstract values to a sub-

lattice of the power-set lattice of abstract values. This technique is easy to implement

by choosing a data type for abstract values that has appropriate meet (u) and join (t)

operators. It is also easier to predict the behavior of using a restricted lattice than using

a widening operator since its results depend only on local effects.

The original sub-0CFA [Ashley and Dybvig, 1998] operates in terms of a widening opera-

tor that takes into account how many iterations the flow graph has gone through. However,

for the reasons mentioned above we use a variant that merely restricts the lattice. It bounds

both the size of the graph and the height of the lattice by approximating all non-singleton

sets of functions with >. That is to say, it uses a sub-lattice of the power-set lattice that

contains only >, ⊥, and singleton sets. Any set of size two or more is approximated by

16

2. CFA

>

λx1.e1

iiiiiiiiii

UUUUUUUUUUλx2.e2

ssss

KKKK λx3.e3 . . .

EEEEE

yyyyy λxn.en

RRRRRRR

lllllll

⊥

Figure 2.6.: Flattened lattice of functions

> while all other sets are represented by themselves. This conservative approximation of

0CFA’s power-set lattice has a constant height and is shown in Figure 2.6. Whenever two

or more different functions are joined by t, the result is >. As a result, the values that

flow to the function position of a particular call site either contain at most one function or

are approximated by > and thus add at most a linear number of edges to the graph.

This approach lets more functions escape than in 0CFA, but this is not as bad as it might

seem. Flowing to two different places does not cause a function to escape. Functions escape

only when two or more flow to the same point, i.e., when a call site performs some sort of

dispatch. For example, when running the analysis over the following, both f and g escape,

since they both flow into fg, but h is not affected.

(let ([f (lambda (x) e1)] (2.1)
[g (lambda (y) e2)]
[h (lambda (z) e3)])

(let ([fg (if (read) f g)]) (f (g (fg (h (h e4)))))))

In the general case, Ashley and Dybvig [1998] define sub-0CFA by a projection or widen-

ing operator. When this operator restricts sets of values to either singletons or >, it is

equivalent to what is done in Figure 2.6. Other projection operators produce lattices that

can be of constant or even logarithmic height and result in linear or nearly linear analyses.

For example, instead of sets of at most one function, the projection may limit sets to at

most k functions for some constant k.

17

2. CFA

2.5. Non-function types

Programming languages usually have more values than just functions. Thus, we add a

fixed set of primitive types, e.g., INT , PAIR, etc., to the V̂al lattice. However, abstract

values are split into a function part and a non-function part. The function part operates

over the same flattened lattice as sub-0CFA, but since there are a fixed number of non-

function types we allow the non-function part to operate over the full power-set of non-

function types. Nevertheless, we notationally treat abstract values as sets. For example,

{INT ,PAIR, λx.e} is understood to mean 〈{INT ,PAIR}, {λx.e}〉.

18

3. Flow Sensitivity

The control-flow analyses described in Chapter 2 are flow insensitive. This means all

references to a variable are treated as having the same value as the binding site of the

variable. Consider these examples from the introduction:

(let ([x (cons e1 e2)]) (car x)) (3.1)
(let ([x (read)]) (if (pair? x) (car x) #f)) (3.2)
(let ([x (read)]) (begin (cdr x) (car x))) (3.3)

With a flow-insensitive analysis, the reference to x in Example 3.1 is known to be a pair

but, in the Example 3.2 and Example 3.3, all references to x are treated as >.

Type information can be gained, however, from the explicit and implicit dynamic type

checks in the second and third expressions. In Example 3.2, we can deduce from the explicit

pair check, (pair? x), that x must be a pair when car is called. In Example 3.3, we can

also deduce that x must be a pair when car is called, since the implicit pair check in cdr

guarantees that it returns only if its argument is a pair.

In these cases, the monotonicity requirement for implementing the analysis in a flow

graph is still satisfied since monotonicity requires only that individual nodes in the flow

graph change monotonically. In Example 3.3, every node in the flow graph starts with ⊥

a value. As the flow graph converges to a solution, the value for x before (cdr x) moves

up the lattice to >. The value for x after (cdr x), however, moves up only to pair values.

Both points in the program move monotonically up the lattice, even though a lower value

in the lattice occurs after a higher value in the evaluation order of the code.

19

3. Flow Sensitivity

Information is constructive when it is learned from operations that are constructing

values as with Example 3.1. Information is observational when it is learned from operations

that are observing values as with Example 3.2 and Example 3.3.

Observational information is restrictive, since it restricts the type of a variable or value,

as in the restriction of x to the pair type in Example 3.2 and Example 3.3. If observational

information restricts a type to two or more disjoint types, the type is ⊥. In general,

wherever a ⊥ type occurs, the sequentially following code is unreachable, i.e., dead, and

can be discarded.

Without this sort of observational information, a value that becomes > will stay at >.

These > values arise in a number of ways and as they represent no knowledge they are

unoptimizable. Thus, it is particularly important that the analysis be able to move away

from > to more restricted values. For example, the return value of a function like car or

cdr is >. Also, whenever two functions flow to the same location they are approximated

by >. Finally, the arguments to any top-level-bound function that is callable from outside

the module being analyzed are approximated by >. Each of these sources of > can in turn

cause further values to be approximated by > as the > value joins with other values or

forces procedures to be marked as escaped and thus have arguments approximated by >.

To collect observational information, the analysis must be flow-sensitive as the type

information about a variable is different at different points, e.g., before and after an obser-

vation. This chapter presents such an analysis in two stages. First, it presents an analysis

that is flow sensitive and gathers observational information only from functions like car

that unconditionally restrict the type of their argument. The approach to this form of

flow sensitivity is standard. It then generalizes this and presents an analysis that also

gathers observational information from functions that restrict the type of their argument

conditionally. For example, the argument of pair? is limited to pairs if and only if pair?

returns true. This form of flow sensitivity is novel.

20

3. Flow Sensitivity

Expressions: e ∈ Exp = x | λx.e | e e | c | e; e | if e e e
c ∈ Const = #f | n | . . .
n ∈ Num = 0 | 1 | 2 | . . .

Contexts: C ∈ Ctxt = � | (� e1) | (e0 �) | (λx.�) | (�; e1) | (e0;�)
| (if � e1 e2) | (if e0 � e2) | (if e0 e1 �)

Signatures: K ∈ Exp → Ctxt

r̂ ∈ Bool = {⊥,>}
ρ̂ ∈ Ênv = Var → V̂al
v̂ ∈ V̂al = F̂un × ℘(T̂ag)

f̂ ∈ F̂un = ℘(L̂am + P̂rim)
t̂ ∈ T̂ag = {FALSE ,TRUE , INT ,FLOAT ,PAIR, . . . }

L̂am = {λx1.e1, λx2.e2, λx3.e3, . . . }

o ∈ P̂rim = {pair?, car, cdr, . . . }

ARG ∈ Ênv × Exp × V̂al → Ênv

ARG(ρ̂, e, v̂) =

⊥ if v̂ = ⊥
ρ̂ if v̂ 6= ⊥ ∧ e /∈ Var
ρ̂[e 7→ ρ̂(e) u v̂] if e ∈ Var

Figure 3.1.: Common definitions

3.1. Flow-sensitivity for unconditional observers

To recover observational information from functions like car, an analysis must be flow

sensitive.1 A flow-insensitive analysis takes information about a variable’s abstract value

directly from its binding site to each reference. The information about a variable is the

1The term flow sensitive has some ambiguity to it. Even the coiner of the term, Banning [1979], used it with
three different meanings [Marlowe et al., 1995]. This dissertation uses the glossary definition [Mogensen,
2000] and takes it to be a property that describes an analysis that takes the order and sequence of
evaluation into account. This contrasts with analyses like the CFA in Chapter 2 that are flow insensitive
and do not take evaluation order into account.

21

3. Flow Sensitivity

same at all references to the variable. To be flow-sensitive, the analysis adjusts the abstract

value of variables as it traces the execution flow of the program. Consider Example 3.3 on

page 19 which used (cdr x) and (car x). With flow-sensitivity, the variable x starts at

its binding site with the abstract value >. It then flows to (cdr x). On entry to (cdr x),

x still has the abstract value >. Since cdr throws an error and does not return unless its

argument is a pair, the analysis learns that x is a pair on exit from (cdr x). This then

flows to (car x). Thus, (car x) is only ever called with a pair as argument. The implicit

pair check in cdr prevents non-pair values from flowing to the car, so the implicit pair

check in the car can be safely omitted.

To gather restrictive information, each function is annotated with the abstract value that

each argument must be for the function to return. For example, if car returns, its argument

must be a pair. This is not limited to built-in primitives. For user-defined functions, the

analysis examines the abstract value of each formal parameter after flowing through the

function body. In the following example, if g returns, the analysis knows the function’s

argument, y, is a pair. Thus, x must be a pair after returning from (g x). Consequently,

the implicit pair check in cdr is redundant and can be safely omitted.

(let ([x (read)] (3.4)
[g (lambda (y) (+ (car y) 1))])

(g x)
(cdr x))

The formal semantics for an analysis with flow sensitivity for unconditional observers is a

straightforward extension of the analysis in Figure 2.4 for the flow-insensitive 0CFA and is

shown in Figure 3.2 and Figure 3.3. It includes sequencing by threading the environment

through the execution flow of the program. Each expression still has an associated reacha-

bility flag and result value, but now each expression also has two environments associated

with it. One tracks the types of variables when entering the expression. The other tracks

the types of variables when exiting the expression. At each function call, arguments are

22

3. Flow Sensitivity

restricted to only those abstract values that are compatible with the particular function

returning. After (car x) for example, x is restricted to pairs. Both the entering and

exiting environments are treated as reduced abstract domains [Cousot and Cousot, 1979]

thus equating abstract elements with the same meaning, i.e., concretization. Hence, if any

component of an environment is ⊥, then all components of the environment are forced

to be ⊥. For example, if x is known to be an integer, then x is ⊥ after (car x). This

causes all components of the exiting environment to be ⊥. In addition, as part of the

reduced abstract domain, the return value of (car x) becomes ⊥. This models the fact

that (car x) does not return if x is an integer.

This form of flow sensitivity will not learn information from some observers hidden inside

function calls. For example, in the following, it will not learn that x is a pair at e2 even

though it will lean that x is a pair at e1.

(let ([x read]) (3.5)
(let ([f (lambda () (car x) e1)])

(f)
e2))

However, when a variable is immutable, ignoring restrictive information about that variable

is sound. The worst that happens is that the analysis conservatively over approximates

some values.

On the other hand, when a variable is mutated, it is not a safe approximation to ignore

the mutation, since the value might become a value not approximated by the original value.

For example, in Example 3.6, ignoring the set! inside f would lead to the conclusion that

x is a pair at the call to car.

(let ([x (cons 1 2)]) (3.6)
(let ([f (lambda () (set! x 3))])

(f)
(car x)))

For simplicity of presentation, the discussion of how to handle this is deferred until Sec-

tion 6.7. For now all variables are assumed to be immutable.

23

3. Flow Sensitivity

Signatures: JeKin ∈ Bool × Ênv
JeKout ∈ V̂al × Ênv
RET ∈ V̂al → V̂al × Ênv

RET
(
f̂
)

=
⊔
f∈f̂

RET (f)

RET (λx.e) = 〈v̂, ρ̂(x)〉 where 〈v̂, ρ̂〉 = JeKout
RET (car) = 〈>, {PAIR}〉

RET (pair?) = 〈{FALSE ,TRUE}, >〉
· · ·

Figure 3.2.: Definitions for unconditional observers

This simple form of flow sensitivity handles functions like car that unconditionally pro-

vide observational information about their arguments when they return. However, it fails

to handle predicates such as pair?. The fact that a call to pair? returns says nothing

about its argument. Rather, the information is conditional. Whether it returns a true or

false value tells the analysis whether the argument is a pair.

3.2. Flow-sensitivity for conditional observers

To handle conditional or predicated observers, we generalize the environments flowing

through the program and make the analysis predicate aware. For the exit of an expression,

the analysis stores one environment for when the expression returns a true value and

another for when the expression returns a false value. The environment stored for entry to

the expression remains the same as before.

Predicate awareness is important when recovering types in a dynamically typed language

as predicates are the most primitive way for type information to be learned. For example,

x is a pair if and only if (pair? x) is true. Type information can be learned from non-

24

3. Flow Sensitivity

JxKin w 〈>, ρ̂〉 var
JxKout w 〈ρ̂(x), ρ̂[x 7→ ρ̂(x)]〉

Jλx.eKin w 〈>, ρ̂〉 lambda
Jλx.eKout w 〈{λx.e} , ρ̂〉

Je0 e1Kin w 〈r̂, ρ̂〉 callin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂〉 K(e0) = (� e1)
callmid

Je1Kin w 〈>, ρ̂〉

Jλx.eλKin w 〈>, ρ̂λ〉 Je0Kout w 〈{λx.eλ}, ρ̂e0〉
Je1Kout w 〈v̂1, ρ̂

e1〉 K(e1) = (e0 �)
callfun

JeλKin w 〈>, ρ̂λ〉

Je0Kout w
〈
{f̂}, ρ̂e0

〉
Je1Kout w 〈v̂1, ρ̂

e1〉

〈v̂, v̂arg〉 = RET (f̂) ρ̂′arg = ARG(ρ̂e1 , e1, v̂1 u v̂arg)
callout

Je0 e1Kout w
〈
v̂, ρ̂′arg

〉
JcKin w 〈>, ρ̂〉 const

JcKout w 〈ABS(c), ρ̂〉

Je0; e1Kin w 〈r̂, ρ̂〉 seqin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂〉 K(e0) = (�; e1)
seqmid

Je1Kin w 〈>, ρ̂〉

seqout

Je0; e1Kout w Je1Kout

Jif e0 e1 e2Kin w 〈r̂, ρ̂〉 ifin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂〉 K(e0) = (if � e1 e2)
ifmid

Je1Kin w 〈>, ρ̂〉 Je2Kin w 〈>, ρ̂〉

ifout

Jif e0 e1 e2Kout w Je1Kout t Je2Kout

Figure 3.3.: Rules for unconditional observers

25

3. Flow Sensitivity

Signatures: JeKin ∈ Bool × Ênv
JeKout ∈ V̂al × Ênv × Ênv

RET
(
f̂
)

=
⊔
f∈f̂

RET (f)

RET (λx.e) = 〈v̂, ρ̂t(x), ρ̂f (x)〉 〈v̂, ρ̂(x)〉 where 〈v̂, ρ̂t, ρ̂f 〉 = JeKout
RET (car) = 〈>, {PAIR}, {PAIR}〉

RET (pair?) = 〈{FALSE ,TRUE}, {PAIR}, >\{PAIR}〉
· · ·

Figure 3.4.: Predicate aware definitions

conditional observers such as car, but handling predicates is both more general and more

effective. Predicate awareness is more general because functions like car can be treated as

degenerate predicates. For example, with car, both true and false return values indicate

that its argument is a pair. Predicate awareness is also more effective since it allows the

analysis to take advantage of dynamic type checks that are in the code explicitly. For

example, if the code is written in the style of Example 3.7 and contains explicit error

checking code, the analysis can use the type information learned from correct-types? to

eliminate type checks in e1.

(lambda (x1 x2 · · · xn) (3.7)
(if (correct-types? x1 x2 · · · xn) e1 e2))

Another common case is when a recursive function uses a dynamic type check to determine

when to stop recurring. For example, a function that recurs on a list might be structured

in the following style.

(letrec ([f (lambda (x) (3.8)
(if (pair? x) e1 e2))])

e3)

In this case, learning type information from the pair? predicate allows the analysis to

eliminate implicit type checks of x in e1.

26

3. Flow Sensitivity

JxKin w 〈>, ρ̂〉 var
JxKout w 〈ρ̂(x), ρ̂[x 7→ ρ̂(x) u >t], ρ̂[x 7→ ρ̂(x) u >f]〉

Jλx.eKin w 〈>, ρ̂〉 lambda
Jλx.eKout w 〈{λx.e} , ρ̂, ρ̂〉

Je0 e1Kin w 〈r̂, ρ̂〉 callin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (� e1)
callmid

Je1Kin w 〈>, ρ̂t t ρ̂f 〉

Jλx.eλKin w 〈>, ρ̂λ〉 Je0Kout w
〈
{λx.eλ}, ρ̂e0

t , ρ̂
e0
f

〉
Je1Kout w

〈
v̂1, ρ̂

e1
t , ρ̂

e1
f

〉
K(e1) = (e0 �)

callfun

JeλKin w 〈>, ρ̂λ〉

Je0Kout w
〈
{f̂}, ρ̂e0

t , ρ̂
e0
f

〉
Je1Kout w

〈
v̂1, ρ̂

e1
t , ρ̂

e1
f

〉
〈v̂, v̂t, v̂f 〉 = RET (f̂) ∀i ∈ {t, f}.ρ̂′i = ARG(ρ̂e1

t t ρ̂
e1
f , e1, v̂1 u v̂i)

callout

Je0 e1Kout w
〈
v̂, ρ̂′t, ρ̂

′
f

〉
JcKin w 〈>, ρ̂〉 const

JcKout w 〈ABS(c), ρ̂, ρ̂〉

Je0; e1Kin w 〈r̂, ρ̂〉 seqin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (�; e1)
seqmid

Je1Kin w 〈>, ρ̂t t ρ̂f 〉

seqout

Je0; e1Kout w Je1Kout

Jif e0 e1 e2Kin w 〈r̂, ρ̂〉 ifin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (if � e1 e2)
ifmid

Je1Kin w 〈>, ρ̂t〉 Je2Kin w 〈>, ρ̂f 〉

ifout

Jif e0 e1 e2Kout w Je1Kout t Je2Kout

Figure 3.5.: Predicate aware rules

27

3. Flow Sensitivity

Though we use simple type predicates like pair? as a prototypical example, these tech-

niques generalize to other properties that can be tested by a predicate. Examples include

the numerical range of a variable, whether an index is within a vector’s bound, or whether

a list is sorted.

Figure 3.4 and Figure 3.5 present this formally. They include two environments in JeKout.

One contains abstract values for when e returns true and the other for when e returns false.

For example, J(pair? x)Kout has x as a pair in the true environment and as a non-pair in

the false environment. These true and false environments are used by the ifmid rule. The

true environment of the test flows to the entering environment of the true branch. The

false environment of the test flows to the entering environment of the false branch.

In the abstract semantics of Figure 3.5, gathering restrictive information from a function

call, e.g., (car x) or (pair? x), is implemented by the callout rule. First, the values and

environments that flow out of e0 and e1 are collected. Next, RET examines any functions,

f̂ , flowing out of e0 and returns three abstract values. One value is the return value of f̂ .

The other two are the values that the argument to f̂ must be for f̂ to return either true

or false respectively. Finally, ARG uses this information to determine for both the true

and false cases if the function could return to this call site given the abstract value of the

call site’s argument. For example, (car 3) never returns. If the argument is a variable,

ARG restricts the variable to the appropriate abstract value. Thus, after (pair? x), x is

restricted to pairs and non-pairs in the true and false cases respectively.

Each primitive or function has one abstract value for its argument for when it returns

true and another for when it returns false. For example, with pair?, RET returns the

abstract value for pairs in the true case and the abstract value for non-pairs in the false

case. Unconditional observers like car have the same abstract value in both the true and

false cases. For user-defined functions, the same information is obtained from the exiting

true and false environments of the body of the function.

28

3. Flow Sensitivity

r̂

��

ρ̂in

����

e

�� ���� ����
v̂ ρ̂t ρ̂f

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

(a) A flow-sensitive node

�� ����_ _�
�

�
�_ _e1*+

ON T?

��""

PQ
=<F?

��

BC
?>����

89
ML����_ _�

�
�
�

_ _e2

��

@A
=< ����

89
=< ����

_ _�
�

�
�

_ _e3*+
?>
��

BC
?>���� ����

t@A
-,

��

t

����

tBC
/.
������

_ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _

(b) A composite flow graph

Figure 3.6.: Flow graphs for flow-sensitive 0CFA

3.3. Flow-graph representation of flow-sensitivity

As with flow-insensitive CFA, these constraint rules can be implemented by a flow graph.

Yet, while information can flow directly from variable bindings to variable references in flow-

insensitive CFA, this is not sufficient in flow-sensitive CFA. Instead, the abstract value for

a variable must be threaded through each expression. In addition to the reachability flags

and result abstract values, the analysis associates an environment with each entry edge

of an expression and a true and a false environment with each exit edge of an expression.

This is depicted in Figure 3.6a. The lines with single-headed arrows represent the flow

of single values, and lines with double-headed arrows represent the flow of environments.

Figure 3.6b shows how to extend the composite flow graph for if from Figure 2.5b to

account for the extra edges and illustrates the flow of the true and false environments.

This graph formulation still has only linearly many edges, but some edges now contain

environments. The lattice of an environment is the Cartesian product of the lattice for each

variable, so the lattice height of an environment is linear in the number of variables. Thus,

the flow graph has a linear number of edges with linear height lattices and consequently

takes quadratic time to converge in the worst case.

29

3. Flow Sensitivity

In fact, this quadratic behavior is quite easy to trigger. Consider the following expression.

(lambda (x1 x2 · · · xn)
(car x1) (car x2) · · · (car xn)
(cdr x1) (cdr x2) · · · (cdr xn))

This expression has size O(n) and n variables in scope. Thus, the environments that flow

from a car or cdr to the following expression each contain n variables. Since there are

O(n) places where environments flow between expressions, the flow graph for this expression

using the constraint rules as given in Figure 3.5 takes quadratic time to converge.

30

4. Fast Flow Sensitivity

The flow-graph based algorithm for flow-sensitive CFA described in Chapter 3 is quadratic

because environments are threaded through each expression. Contrast this with the flow-

insensitive sub-0CFA from Chapter 2 where the abstract value of a variable flows directly

from its binding location to each reference without threading through intervening expres-

sions. To implement flow sensitivity efficiently, we adopt a similar approach. Instead of

flowing abstract values from a variable binding site to each reference, the analysis flows the

information directly from one occurrence of the variable to the next, following the control

flow of the program. The abstract value of a variable is adjusted at each occurrence.

When moving from one occurrence to the next, the true and false values for each variable

may join or swap with each other. For example, consider how abstract values for x flow

from (pair? x) to (car x) in the following expression. It is of the sort that may arise via

the expansion of boolean connectives such as and, or, and not. Assume x is not referenced

in e1 or e2.

(if (if (pair? x) e1 e2) (car x) e3) (4.1)

What the flow-sensitive analysis learns about x at (car x) depends on the return values

of e1 and e2. If e1 evaluates to only true values and e2 evaluates to only false values, then x

at (car x) is always a pair. If, however, e1 evaluates to only false values and e2 evaluates

to only true values, then x at (car x) is never a pair. Other cases arise if either expression

diverges or returns both true and false values.

31

4. Fast Flow Sensitivity

Likewise, consider the following expression where restrictive information is learned from

(car x) in one of the branches of the inner if. As before, assume x is not referenced in

expressions e0, e1, or e2.

(let ([x (read)]) (4.2)
(if (if e0 (begin (car x) e1) e2)

(cdr x)
e3))

After (car x), x is known to be a pair, but the abstract value of x at (cdr x) depends

upon the return values of e1 and e2. If e2 returns a true value, then (cdr x) is reachable

without passing through (car x). If e2 evaluates to only false values, then all paths to

(cdr x) go through (car x), and x at (cdr x) must be a pair. Interestingly, the return

value of e0 is not needed to determine this, since if e2 always evaluates to a false value,

then (cdr x) is reachable only when e0 is a true value and sends control through (car x).

Dealing with how the abstract values of variables change as they flow through the pro-

gram while taking only O(n logn) time is the primary technical challenge of this analysis.

The remainder of this chapter shows how to do this. The result is an analysis that takes

only linear-log time and produces the same results as the analysis in Chapter 3.

First, Section 4.1 defines a skipping function VC,e that allows values to move from one

point in the program to another without threading through each intervening expression,

while accounting for changes that happen as they flow through each expression. Next,

Section 4.3 explains how to determine where to use the skipping functions versus the

constraint rules. Then Section 4.4 describes the data structures used to cache the skipping

functions efficiently so that each one can be computed or updated in logarithmic time.

Since the algorithm in Section 4.3 ensures that only a linear number of skipping functions

are used, the entire analysis then takes only linear-log time. Finally, Section 4.5 puts all

of these together into a linear-log time algorithm that computes results identical to those

of the less efficient algorithm.

32

4. Fast Flow Sensitivity

Gt(e, u) = (v̂ u >t) 6= ⊥ ? u : ⊥
Gf (e, u) = (v̂ u >f) 6= ⊥ ? u : ⊥

where 〈v̂, ρ̂t, ρ̂f 〉 = JeKout

Figure 4.1.: True and false expression guards

4.1. Context skipping

In Example 4.1 with pair?, the traditional algorithm first flows the abstract value of x

from the exiting environments of (pair? x) into the entering environments of e1 and e2,

then through e1 and e2, and finally from the exiting environments of e1 and e2 out of both

if expressions and into (car x). When flowing through e1 and e2, the abstract value of

x is threaded through every subexpression of e1 and e2. If x is not referenced in e1 and

e2, however, these expressions can be skipped. Intuitively, the true and false environments

that contain x might be swapped or joined, but the value of x in each environment does

not fundamentally change. The following theorem reflects this intuition.

Theorem 4.1. Expression Skipping

If x is a variable not mentioned in e then

ρ̂t(x) = Gt(e, ρ̂in(x)) and

ρ̂f (x) = Gf (e, ρ̂in(x))

where 〈r̂, ρ̂in〉 = JeKin

〈v̂, ρ̂t, ρ̂v〉 = JeKout

and Gt(e, u) and Gf (e, u) are as defined in Figure 4.1.

Proof. The proof proceeds by induction on e while using the constraint rules in Figure 3.5

on page 27. Here only the proof of ρ̂t(x) = Gt(e, ρ̂in(x)) is shown as the proof of ρ̂f (x) =

33

4. Fast Flow Sensitivity

Gf (e, ρ̂in(x)) is almost identical. As a notational convenience in this and subsequent proofs,

〈r̂e, ρ̂ein〉 = JeKin and
〈
v̂e, ρ̂et , ρ̂

e
f

〉
= JeKout for any given e.

Case 1. If v̂ u >t = ⊥, then Gt(e, ρ̂in(x)) = ⊥. Thus, by the reduced abstract domain, we

have ρ̂t(x) = ⊥. Hence, Gt(e, ρ̂in(x)) = ρ̂t(x).

Case 2. If v̂u>t 6= ⊥ and e is a variable x′ 6= x, a lambda expression λx′.e, or a constant c,

then by the var, lambda, and const rules we have ρ̂t(x) = ρ̂in(x). Hence, Gt(e, ρ̂in(x)) =

ρ̂in(x) = ρ̂t(x).

Case 3. If v̂ u >t 6= ⊥ and e is a function call e0 e1, then:

– By the callin rule, we have ρ̂e0
in(x) = ρ̂in(x).

– By the induction hypothesis on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) =

Gf (e0, ρ̂
e0
in(x)). Since v̂ u >t 6= ⊥ and thus v̂e0 6= ⊥, these simplify to ρ̂e0

t (x) = ρ̂e0
in(x)

and ρ̂e0
f (x) = ρ̂e0

in(x).

– By the callmid rule, we have ρ̂e1
in(x) = ρ̂e0

t (x) t ρ̂e0
f (x).

– By the induction hypothesis on e1, we have ρ̂e1
t (x) = Gt(e1, ρ̂

e1
in(x)) and ρ̂e1

f (x) =

Gf (e1, ρ̂
e1
in(x)). Since v̂ u >t 6= ⊥ and thus v̂e1 6= ⊥, these simplify to ρ̂e1

t (x) = ρ̂e1
in(x)

and ρ̂e1
f (x) = ρ̂e1

in(x).

– By the callout rule, we have ρ̂et (x) = ARG(ρ̂e1
t t ρ̂

e1
f , e1, v̂

e1u v̂t)(x). Since v̂u>t 6= ⊥,

we have v̂e1 u v̂t 6= ⊥. Since x is not in e, x is also not in e1. Together these simplify

the equation to ρ̂et (x) =
(
ρ̂e1
t t ρ̂

e1
f

)
(x).

Combining and simplifying these, we thus have Gt(e, ρ̂in(x)) = ρ̂in(x) = ρ̂t(x).

Case 4. If v̂ u >t 6= ⊥ and e is a sequencing e0; e1, then:

– By the seqin rule we have ρ̂e0
in(x) = ρ̂in(x).

34

4. Fast Flow Sensitivity

– By the induction hypothesis on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) =

Gf (e0, ρ̂
e0
in(x)). Since v̂ u >t 6= ⊥ and thus v̂e0 6= ⊥, these simplify to ρ̂e0

t (x) = ρ̂e0
in(x)

and ρ̂e0
f (x) = ρ̂e0

in(x).

– By the seqmid rule, we have ρ̂e1
in(x) = ρ̂e0

t (x) t ρ̂e0
f (x).

– By the induction hypothesis on e1, we have ρ̂e1
t (x) = Gt(e1, ρ̂

e1
in(x)). Since v̂u>t 6= ⊥

and thus v̂e1 6= ⊥, these simplify to ρ̂e1
t (x) = ρ̂e1

in(x).

– By the seqout rule, we have ρ̂et (x) = ρ̂e1
t (x).

Combining and simplifying these, we thus have Gt(e, ρ̂in(x)) = ρ̂in(x) = ρ̂t(x).

Case 5. If v̂ u >t 6= ⊥ and e is a conditional if e0 e1 e2, then:

– By the ifin rule, we have ρ̂e0
in(x) = ρ̂in(x).

– By the induction hypothesis on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) =

Gf (e0, ρ̂
e0
in(x)). Since v̂ u >t 6= ⊥ and thus v̂e0 6= ⊥, these simplify to ρ̂e0

t (x) = ρ̂e0
in(x)

and ρ̂e0
f (x) = ρ̂e0

in(x).

– By the ifmid rule, we have ρ̂e1
in(x) = ρ̂e0

t (x) and ρ̂e2
in(x) = ρ̂e0

f (x).

– By the induction hypothesis on e1 and e2, we have ρ̂e1
t (x) = Gt(e1, ρ̂

e1
in(x)), ρ̂e1

f (x) =

Gf (e1, ρ̂
e1
in(x)), ρ̂e2

t (x) = Gt(e2, ρ̂
e2
in(x)), and ρ̂e2

f (x) = Gf (e2, ρ̂
e2
in(x)). Since v̂u>t 6= ⊥,

either v̂e1 6= ⊥, v̂e2 6= ⊥, or both.

– If v̂e1 6= ⊥, then the first two equations simplify to ρ̂e1
t (x) = ρ̂e1

in(x) and ρ̂e1
f (x) =

ρ̂e1
in(x). Otherwise they simplify to ρ̂e1

t (x) = ⊥ and ρ̂e1
f (x) = ⊥.

– If v̂e2 6= ⊥, then the last two equations simplify to ρ̂e2
t (x) = ρ̂e2

in(x) and ρ̂e2
f (x) =

ρ̂e2
in(x). Otherwise they simplify to ρ̂e2

t (x) = ⊥ and ρ̂e2
f (x) = ⊥.

– By the ifout rule, we have ρ̂et (x) = (ρ̂e1
t t ρ̂

e2
t) (x).

35

4. Fast Flow Sensitivity

Combining and simplifying these we thus have Gt(e, ρ̂in(x)) = ρ̂in(x) = ρ̂t(x) regardless of

whether v̂e1 6= ⊥, v̂e2 6= ⊥, or both.

Going back to Example 4.1, this theorem allows the analysis to directly compute the

abstract values of x at the end of e1 and e2 given the abstract values at the start of e1 and

e2. The Gt(e, u) and Gf (e, u) functions act as guards and return the abstract value u if

an only if JeKout contains true or false values respectively.

This theorem deals only with the flow of abstract values from the entry of an expression

to its exit. As seen in Example 4.1 and Example 4.2, however, we are also interested in

how abstract values flow from an expression through its surrounding context. In the ex-

amples, abstract values flow from the outputs of (pair? x) and (car x) to the output

of the surrounding (if (pair? x) e1 e2) and (if e0 (begin (car x) e1) e2) respec-

tively. To account for this, the analysis computes the flow across a context by means of the

context-skipping function VC,e defined in Figure 4.2. Given an expression, e, in a single-

layer context, C, it computes the abstract value of a variable in the exit environments of

C[e] given the abstract value in the exit environments of e and the entry environment of

C[e]. The following theorem states this formally. Again, the intuition is that the true and

false information about a variable might join or swap but do not otherwise change.

Theorem 4.2. Single-Layer Context Skipping (Exiting)

If x is a variable not mentioned in the single-layer context C then〈
ρ̂
C[e]
t (x), ρ̂C[e]

f (x), ρ̂in(x)
〉

= VC,e
〈
ρ̂et (x), ρ̂ef (x), ρ̂in(x)

〉
where

〈
v̂e, ρ̂et , ρ̂

e
f

〉
= JeKout〈

v̂C[e], ρ̂
C[e]
t , ρ̂

C[e]
f

〉
= JC[e]Kout

〈r̂, ρ̂in〉 = JC[e]Kin.

36

4. Fast Flow Sensitivity

VC,e ∈ V̂al × V̂al × V̂al → V̂al × V̂al × V̂al

VC,e 〈v̂t, v̂f , v̂in〉 =
〈
Gt(C[e] , v̂′t), Gf (C[e] , v̂′f), v̂′in

〉
where

〈
v̂′t, v̂

′
f , v̂

′
in

〉
= V ′C 〈v̂t, v̂f , v̂in〉

V ′(λx.�) 〈v̂t, v̂f , v̂in〉 = 〈v̂in, v̂in, v̂in〉
V ′(� e1) 〈v̂t, v̂f , v̂in〉 = 〈v̂t t v̂f , v̂t t v̂f , v̂in〉
V ′(e0 �) 〈v̂t, v̂f , v̂in〉 = 〈v̂t t v̂f , v̂t t v̂f , v̂in〉
V ′(�;e1) 〈v̂t, v̂f , v̂in〉 = 〈v̂t t v̂f , v̂t t v̂f , v̂in〉
V ′(e0;�) 〈v̂t, v̂f , v̂in〉 = 〈v̂t, v̂f , v̂in〉

V ′(if � e1 e2) 〈v̂t, v̂f , v̂in〉 =
〈
v̂′t, v̂

′
f , v̂in

〉
where v̂′t = Gt(e1, v̂t) t Gt(e2, v̂f)

v̂′f = Gf (e1, v̂t) t Gf (e2, v̂f)

V ′(if e0 � e2) 〈v̂t, v̂f , v̂in〉 =
〈
v̂′t, v̂

′
f , v̂in

〉
where v̂′t = v̂t t Gt(e2, v̂in)

v̂′f = v̂f t Gf (e2, v̂in)

V ′(if e0 e1 �) 〈v̂t, v̂f , v̂in〉 =
〈
v̂′t, v̂

′
f , v̂in

〉
where v̂′t = v̂t t Gt(e1, v̂in)

v̂′f = v̂f t Gf (e1, v̂in)

Figure 4.2.: Context skipping function

37

4. Fast Flow Sensitivity

Proof. The proof proceeds by cases on C while using the constraint rules in Figure 3.5 and

Theorem 4.1. Only the part for ρ̂C[e]
t (x) is shown as the part for ρ̂C[e]

f (x) is almost identical.

For ease of discussion, let
〈
ρ̂Vt (x), ρ̂Vf (x), ρ̂Vin(x)

〉
= VC,e

〈
ρ̂et (x), ρ̂ef (x), ρ̂in(x)

〉
.

Case 1. If v̂ u >t = ⊥, then ρ̂Vt (x) = ⊥. Thus, by the reduced abstract domain, we have

ρ̂
C[e]
t (x) = ⊥. Hence, ρ̂C[e]

t (x) = ρ̂Vt (x).

Case 2. If v̂ u >t 6= ⊥ and C is (λx′.�), then by the lambda rule, we have ρ̂C[e]
t (x) =

ρ̂
C[e]
in (x) = ρ̂Vt (x).

Case 3. If v̂ u >t 6= ⊥ and C is (� e1), then:

– By the definition of VC,e, we have ρ̂et (x) t ρ̂ef (x) = ρ̂Vt (x).

– By the callmid rule, we have ρ̂e1
in(x) = ρ̂et (x) t ρ̂ef (x).

– By Theorem 4.1, we have ρ̂e1
t (x) = ρ̂e1

in(x) and ρ̂e1
f (x) = ρ̂e1

in(x).

– By the callout rule, we have ρ̂C[e]
t (x) = ARG(ρ̂e1

t t ρ̂
e1
f , e1, v̂

e1 u v̂t)(x). Since v̂u>t 6=

⊥, we have v̂e1 u v̂t 6= ⊥. Since x is not in C[e], x is also not in e. Together these

simplify the equation to ρ̂C[e]
t (x) =

(
ρ̂e1
t t ρ̂

e1
f

)
(x).

Combining and simplifying these, we thus have ρ̂C[e]
t (x) = ρ̂Vt (x).

Case 4. If v̂ u >t 6= ⊥ and C is (e0 �), then:

– By the definition of VC,e, we have
(
ρ̂et t ρ̂ef

)
(x) = ρ̂Vt (x).

– By the callout rule, we have ρ̂C[e]
t (x) = ARG(ρ̂et t ρ̂ef , e1, v̂

eu v̂t)(x). Since v̂u>t 6= ⊥,

we have v̂e u v̂t 6= ⊥. Since x is not in C[e], x is also not in e. Together these simplify

the equation to ρ̂C[e]
t (x) =

(
ρ̂et t ρ̂ef

)
(x).

Combining and simplifying these, we thus have ρ̂C[e]
t (x) = ρ̂Vt (x).

Case 5. If v̂ u >t 6= ⊥ and C is (�; e1), then:

38

4. Fast Flow Sensitivity

– By the definition of VC,e, we have ρ̂et (x) t ρ̂ef (x) = ρ̂Vt (x).

– By the seqmid rule, we have ρ̂e1
in(x) = ρ̂et (x) t ρ̂ef (x).

– By Theorem 4.1, we have ρ̂e1
t (x) = Gt(e1, ρ̂

e1
in(x)). Since v̂u>t 6= ⊥ and thus v̂e1 6= ⊥,

this simplifies to ρ̂e1
t (x) = ρ̂e1

in(x).

– By the seqout rule, we have ρ̂C[e]
t (x) = ρ̂e1

t (x).

Combining and simplifying these, we thus have ρ̂C[e]
t (x) = ρ̂Vt (x).

Case 6. If v̂ u >t 6= ⊥ and C is (e0;�), then:

– By the definition of VC,e, we have ρ̂et (x) = ρ̂Vt (x).

– By the seqout rule, we have ρ̂C[e]
t (x) = ρ̂et (x).

Combining and simplifying these, we thus have ρ̂C[e]
t (x) = ρ̂Vt (x).

Case 7. If v̂ u >t 6= ⊥ and C is (if � e1 e2), then:

– By the definition of VC,e, we have Gt(e1, ρ̂
e
t (x)) t Gt(e2, ρ̂

e
f (x)) = ρ̂Vt (x).

– By the ifmid rule, we have ρ̂e1
in(x) = ρ̂et (x) and ρ̂e2

in(x) = ρ̂ef (x).

– By Theorem 4.1, we have ρ̂e1
t (x) = Gt(e1, ρ̂

e1
in(x)), ρ̂e1

f (x) = Gf (e1, ρ̂
e1
in(x)), ρ̂e2

t (x) =

Gt(e2, ρ̂
e2
in(x)), and ρ̂e2

f (x) = Gf (e2, ρ̂
e2
in(x)). Since v̂ u >t 6= ⊥, either v̂e1 6= ⊥,

v̂e2 6= ⊥, or both.

– If v̂e1 6= ⊥, then the first two equations simplify to ρ̂e1
t (x) = ρ̂e1

in(x) and ρ̂e1
f (x) =

ρ̂e1
in(x). Otherwise they simplify to ρ̂e1

t (x) = ⊥ and ρ̂e1
f (x) = ⊥.

– If v̂e2 6= ⊥, then the last two equations simplify to ρ̂e2
t (x) = ρ̂e2

in(x) and ρ̂e2
f (x) =

ρ̂e2
in(x). Otherwise they simplify to ρ̂e2

t (x) = ⊥ and ρ̂e2
f (x) = ⊥.

– By the ifout rule we have ρ̂C[e]
t (x) = (ρ̂e1

t t ρ̂
e2
t) (x).

39

4. Fast Flow Sensitivity

Combining and simplifying these, we thus have ρ̂C[e]
t (x) = ρ̂Vt (x) regardless of whether

v̂e1 6= ⊥, v̂e2 6= ⊥, or both..

Case 8. If v̂ u >t 6= ⊥ and C is (if e0 � e2), then:

– By the definition of VC,e, we have ρ̂et (x) t Gt(e2, ρ̂
C[e]
in (x)) = ρ̂Vt (x).

– By the ifin rule, we have ρ̂e0
in(x) = ρ̂

C[e]
in (x).

– By Theorem 4.1 on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) = Gf (e0, ρ̂
e0
in(x)).

Since v̂ u >t 6= ⊥ and thus v̂e0 6= ⊥, these simplify to ρ̂e0
t (x) = ρ̂e0

in(x) and ρ̂e0
f (x) =

ρ̂e0
in(x).

– By the ifmid rule, we have ρ̂e2
in(x) = ρ̂e0

f (x).

– By Theorem 4.1 on e2, we have ρ̂e2
t (x) = Gt(e2, ρ̂

e2
in(x)) and ρ̂e2

f (x) = Gf (e2, ρ̂
e2
in(x)).

Since v̂ u >t 6= ⊥, either v̂e1 6= ⊥, v̂e2 6= ⊥, or both.

– If v̂e2 6= ⊥, then these two equations simplify to ρ̂e2
t (x) = ρ̂e2

in(x) and ρ̂e2
f (x) =

ρ̂e2
in(x). Otherwise they simplify to ρ̂e2

t (x) = ⊥ and ρ̂e2
f (x) = ⊥.

– By the ifout rule, we have ρ̂et (x) = (ρ̂e1
t t ρ̂

e2
t) (x).

Combining and simplifying these, we thus have ρ̂C[e]
t (x) = ρ̂Vt (x) regardless of whether

v̂e2 6= ⊥.

Case 9. If v̂ u >t 6= ⊥ and C is (if e0 e1 �), then the same reasoning as for (if e0 � e2)

applies except that e1 and e2 swap roles.

For example, consider (if (pair? x) e1 e2). The context of (pair? x) is (if � e1 e2).

Thus, if e1 returns only true values and e2 returns only false values, the skipping function,

VC,e, does not change the values in the environment as they flow from (pair? x). On the

other hand, if e1 returns only false values and e2 returns only true values, the skipping

40

4. Fast Flow Sensitivity

function swaps the values of the true and false environments. Other possibilities arise

depending on the values returned by e1 and e2.

While Theorem 4.2 handles only single layer contexts, the following theorem generalizes

this to multilayer contexts.1

Theorem 4.3. Multilayer Context Skipping (Exiting)

If x is a variable not mentioned in a single-layer or multilayer context C then the equation

from Theorem 4.2 holds where VC,e on a composite context is

VC2C1,e = VC2,C1[e] ◦ VC1,e

Proof. By induction on C and Theorem 4.2.

Note that even for multilayer contexts the universe of possible VC,e is finite and small.

Any particular VC,e can be represented in a canonical form of constant size in the following

theorem.

Theorem 4.4. Canonical Skipping Functions

There exist T, F ⊆ {v̂t, v̂f , v̂in} for any C, e, JeKout and JC[e]Kout such that

VC,e 〈v̂t, v̂f , v̂in〉 =
〈⊔

T,
⊔
F, v̂in

〉

Proof. By induction on C and unfolding VC,e.

Intuitively, there are only so many ways to join and swap the true and false values

of a variable. Diagrammatically, these canonical forms are all sub-graphs of the graph

in Figure 4.3 that omit zero or more of the dashed edges that lead to the two join (t)

nodes. Functions of this form have compact, constant-size representations, are closed
1This theorem is the reason why the tuple returned by VC,e has a third component even though it is
unused in Theorem 4.2.

41

4. Fast Flow Sensitivity

v̂t v̂f v̂in

t t

v̂′t v̂′f v̂′in

Figure 4.3.: Graph form of canonical skipping functions

under composition, and form a finite height lattice that they monotonically climb when

JeKout and JC[e]Kout climb the value lattice.

When composing VC,e we always reduce the composition to this canonical form. Thus,

all VC,e can be applied to a given value in constant time even if the VC,e is from the

composition of many VC,e. The analysis takes advantage of this to flow abstract values

quickly across multilayer contexts. Since VC,e is the same for all variables not in C, the

analysis can compute VC,e once and use it for all variables not in C. Section 4.4 shows how

to compute and update these compositions efficiently.

This skipping function is the key insight to the implementing a fast version of the analysis.

The analysis still must choose which contexts to skip and how to compute VC,e efficiently,

but those aspects of the algorithm exists only so that the algorithm can use skipping

functions to flow information through the program more efficiently.

4.2. Context skipping and reachability

Theorem 4.2 and Theorem 4.3 deal with environments exiting a context, i.e., ρ̂t and ρ̂f .

Theorem 4.5 and Theorem 4.6 are their duals and deal with the environment entering a

42

4. Fast Flow Sensitivity

context. They are simpler and do not need to define a skipping function as a simpler

reachability check suffices.

Theorem 4.5. Single-Layer Context Skipping (Entering)

If x is a variable not mentioned in the single-layer context C then

ρ̂ein(x) =

ρ̂
C[e]
in (x) if r̂e = >

⊥ if r̂e = ⊥

where 〈r̂e, ρ̂ein〉 = JeKin〈
r̂C[e], ρ̂

C[e]
in

〉
= JC[e]Kin

Proof. The proof proceeds by cases on C while using the constraint rules in Figure 3.5 and

Theorem 4.1.

Case 1. If r̂ = ⊥, then by the reduced abstract domain, we have ρ̂ein(x) = ⊥.

Case 2. If r̂e = > and C is (λx′.�), then by the lambda rule, we have ρ̂ein(x) = ρ̂
C[e]
in (x).

Case 3. If r̂e = > and C is (� e1), then by the callin rule, we have ρ̂ein(x) = ρ̂
C[e]
in (x).

Case 4. If r̂e = > and C is (e0 �), then:

– By the callin rule, we have ρ̂e0
in(x) = ρ̂

C[e]
in (x).

– By Theorem 4.1 on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) = Gf (e0, ρ̂
e0
in(x)).

Since r̂e = > and thus r̂e0 = >, these simplify to ρ̂e0
t (x) = ρ̂e0

in(x) and ρ̂e0
f (x) = ρ̂e0

in(x).

– By the callmid rule, we have ρ̂ein(x) = ρ̂e0
t (x) t ρ̂e0

f (x).

Combining and simplifying these, we thus have ρ̂ein(x) = ρ̂
C[e]
in (x).

Case 5. If r̂e = > and C is (�; e1), then by the seqin rule, we have ρ̂ein(x) = ρ̂
C[e]
in (x).

43

4. Fast Flow Sensitivity

Case 6. If r̂e = > and C is (e0;�), then:

– By the seqin rule, we have ρ̂e0
in(x) = ρ̂

C[e]
in (x).

– By Theorem 4.1 on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) = Gf (e0, ρ̂
e0
in(x)).

Since r̂e = > and thus r̂e0 = >, these simplify to ρ̂e0
t (x) = ρ̂e0

in(x) and ρ̂e0
f (x) = ρ̂e0

in(x).

– By the seqmid rule, we have ρ̂ein(x) = ρ̂e0
t (x) t ρ̂e0

f (x).

Combining and simplifying these we thus have ρ̂ein(x) = ρ̂
C[e]
in (x).

Case 7. If r̂e = > and C is (if � e1 e2), then by the ifin rule, we have ρ̂ein(x) = ρ̂
C[e]
in (x).

Case 8. If r̂e = > and C is (if e0 � e2) or (if e0 e1 �), then:

– By the ifin rule, we have ρ̂e0
in(x) = ρ̂

C[e]
in (x).

– By Theorem 4.1 on e0, we have ρ̂e0
t (x) = Gt(e0, ρ̂

e0
in(x)) and ρ̂e0

f (x) = Gf (e0, ρ̂
e0
in(x)).

Since r̂e = > and thus r̂e0 = >, these simplify to ρ̂e0
t (x) = ρ̂e0

in(x) and ρ̂e0
f (x) = ρ̂e0

in(x).

– By the ifmid rule, we have ρ̂e1
in(x) = ρ̂e0

t (x) if C is (if e0 � e2) and ρ̂e2
in(x) = ρ̂e0

f (x) if

C is (if e0 e1 �).

Combining and simplifying these we thus have ρ̂ein(x) = ρ̂
C[e]
in (x).

Theorem 4.6. Multilayer Context Skipping (Entering)

If x is a variable not mentioned in a single-layer or multilayer context C then the equation

from Theorem 4.5 holds.

Proof. By induction on C and Theorem 4.5.

4.3. Selecting context skips

The analysis now has two ways to flow abstract values through a program to be analyzed.

The first is via the constraint rules in Figure 3.5. The second is via the skipping function,

44

4. Fast Flow Sensitivity

if1

e2

jjjjjjjjjjj
e3

PPPPPPP

if4 if5

e6

oooooo
e7

OOOOOO
e8

���
e9

===

if10 if11 x12 x13

e14
~~~

e15

@@@

e16
~~~

e17

AAA

x18 x19 x20 x21

Figure 4.4.: Example AST for skipping context selection

VC,e. For each variable, the analysis uses a combination of these methods that ensures the

analysis takes only linear-log time while maintaining semantic equivalence with the original

algorithm.

This is done by selecting the longest contexts to be skipped for which Theorem 4.3 is

valid for a given variable. The length of a context is measured by the number of layers

in the context. The analysis falls back to the constraint rules in Figure 3.5 when the

preconditions of Theorem 4.3 do not hold.

A different set of skips is selected for each variable, and the analysis selects longest skips

for a particular variable, x, by starting with each reference to it and finding the longest

context, C, of it that does not contain x. C is then one of the contexts to be skipped.

Since C is the longest context of e not containing x, the parent of C[e], p, contains

references to x other than the ones in e. Thus, the analysis cannot use Theorem 4.3 to skip

past p, and at p it falls back to the constraint rules from Figure 3.5. The analysis repeats

the process by finding the longest context of p that does not contain x and chooses that

context as one to be skipped. This repeats until the analysis has all the skips needed to

flow x through the entire program.

45

4. Fast Flow Sensitivity

As an example, consider the abstract syntax tree in Figure 4.4 and the longest skips for

x. The dotted edges in the diagram represent multiple layers of the abstract syntax tree

that are omitted and which do not contain references to x. The two children of each if

are the consequent and the alternative. The test part of if if omitted for simplicity.

To select skips, all references to x are examined. In this case they are expressions 12,

13, 18, 19, 20 and 21. For each such expression, the longest context not containing x

is selected. For expression 12, this is the context going from expression 12 to just past

expression 8. For expression 13, this is the context going just past expression 9, and so

on. The parents of these contexts are places where the constraint rules are used instead of

the context skipping function. For example, because of the reference to x in expression 9,

Theorem 4.3 is not valid for moving type information for x from expression 8 to its parent,

expression 5. Thus, the context skipping function cannot be used there.

The process repeats with the parents of each of the skips. For example, expression 5

is the parent of the contexts ending at expressions 8 and 9 so the algorithm selects the

longest context of expression 5 that does not contain x. Likewise for expressions 10 and

11.

In the end the only places where the algorithm uses the constraint rules are expressions

1, 4, 5, 10, and 11. Everywhere else it uses context skipping functions. The entire scope of

x is thus tessellated by the skipping contexts and the points where the analysis falls back

to the constraint rules.

This part of the algorithm is linear because the selected context skips form a tree struc-

ture. The expressions at which the analysis uses the constraint rules are the nodes of the

tree. The contexts being skipped are the edges of the tree. The references to variables

are the leaves. Since the number of edges and the number of nodes in a tree are both

linearly bounded by the number of leaves, the number of skips and the number of uses of

the constraint rules for a particular variable are both linearly bounded by the number of

46

4. Fast Flow Sensitivity

if0

if1

ifn−1

ifn

ifn+1

if2n−1

(car xn) e2n

(car x2) en+2

(car x1) en+1

(car xn) en

(car x2) e2

(car x1) e1...

...

...

VCn···C1,en+1

VCn+1···C2,e2

VC2n−1···Cn,e1

...

Figure 4.5.: Example of quadratic VC,e calculation

references to that variable. Summing over all variables this is thus linear in the size of the

program.

Finding the longest context not containing a particular variable is the most computation-

ally complex part of this process. It is implemented in terms of a lowest common ancestor

algorithm [Aho et al., 1973, Alstrup et al., 2004] that takes linear time for construction

and constant time for each query. Finding the longest skips amounts to finding the lowest

common ancestor of an expression and the immediately preceding and following references

to the variable being considered.

4.4. Caching context skips

Theorem 4.3 allows the analysis to skip over a context and move information about variables

quickly across multiple layers. Once the skipping function, VC,e, is computed and reduced

to the canonical form in Theorem 4.4, it takes only constant time to move information

across C for any variable not referenced in C.

47

4. Fast Flow Sensitivity

We must be careful that the total time to construct all the skipping functions does

not exceed our linear-log time bound. For example, consider the abstract syntax tree in

Figure 4.5, where a different VC,e is needed for each of the n variables, and each context is

n layers deep. Computing the VC,e for each variable separately takes O
(
n2) time.

To ensure a linear-log time bound, the analysis keeps a cache of VC,e for selected C such

that

– only linear-log many VC,e are stored in the cache,

– for any C, a VC,e can be computed from the composition of only logarithmically many

VC,e from the cache, and

– when more information is learned about an expression, only logarithmically many

VC,e in the cache need to be updated, and each VC,e takes only constant time to

update.

Figure 4.6 shows an example of the cached values for one path down a program’s abstract

syntax tree. Together all of these cached VC,e form a tree structure. The same structure

occurs on all other paths down the program tree. Each VC,e shared between different paths

is stored only once in the cache.

The cache can be thought of as starting with the VC,e for single-layer contexts. That is,

it stores the skipping information necessary to flow any variable by a single step from the

exit environment of one expression to the enclosing expression’s exit environment. If the

cache stores only these, then when the abstract value of an expression changes, it takes

only constant time to update.

Next, the single-layer VC,e are paired together. Each single layer C that goes from depth

2k to depth 2k + 1 is paired with each of its single-layer, child contexts which go from

depth 2k+ 1 to 2k+ 2. The VC,e for each of these pairings is included in the cache. These

double-layer VC,e are then also paired together. Each double-layer C that goes from depth

48

4. Fast Flow Sensitivity

if0

if1

if2

if3

if4

if5

if6

if7

et8 ef8

et7 ef7

et6 ef6

et5 ef5

et4 ef4

et3 ef3

et2 ef2

et1 ef1

VC1,e1

VC2,e2

VC3,e3

VC4,e4

VC5,e5

VC6,e6

VC7,e7

VC8,e8

VC1C2,e3

VC3C4,e5

VC5C6,e7

VC7C8,e9

VC1···C4,e5

VC5···C8,e9

VC1···C8,e9

...

Figure 4.6.: Layered structure of the VC,e cache

49

4. Fast Flow Sensitivity

4k to depth 4k + 2 is paired with each of its double-layer, child contexts which go from

depth 4k + 2 to 4k + 4. The VC,e for each of these pairings is also included in the cache.

This process continues iteratively, pairing each 2i-layer context that goes from depth 2i+1k

to depth 2i+1k+ 2i with each of its 2i-layer child contexts which go from depth 2i+1k+ 2i

to 2i+1k + 2i+1.

This selection of cached VC,e has the three important properties that ensure our linear-

logarithmic bound. First, only O(n logn) skipping functions are cached, since only loga-

rithmically many VC,e are cached for any particular e. Second, any VC,e that is not cached

can be computed from the composition of logarithmically many cached VC,e. Third, when

the VC,e for a single-layer context is updated, the double-layer VC,e composed from it are

also updated. If a double-layer VC,e changes, the quadruple-layer VC,e composed from it are

updated, and so on. Thus, when abstract value information is learned about an expression,

at most logarithmically many VC,e in the cache are updated. Each update takes constant

time since each multilayer VC,e in the cache is composed of exactly two VC,e.

This caching strategy can be generalized by considering the path from each expression

to the root. Storing this path as a perfectly balanced variation of a skip list [Pugh, 1990] is

equivalent to the caching strategy just described. By using a variation of Myers applicative

random access stacks [Myers, 1984], however, the number of cached values and the total

time spent updating the cache both become linear in the size of the program. For an

arbitrary C, computing VC,e may still require logarithmically many cached values, so this

does not improve the overall asymptotic bounds, but it improves the constants involved.

This is the representation used by the implementation described in Chapter 6.

Though a single perfectly balanced skip list takes space linear in the length of the skip

list, it degenerates when multiple skip lists share the same tail. Figure 4.7 shows such a

perfectly balanced skip list. Each node, i, occupies P (i) pointers worth of space where

P (i) is the largest integer such that 2P (i)−1 evenly divides i. Nodes of size greater than or

50

4. Fast Flow Sensitivity

•

• •

• • • •

• • • • • • • •

i = 8 7 6 5 4 3 2 1

Figure 4.7.: A perfectly balanced skip list

equal to k happen once every 2k−1 nodes. That is, size two or larger nodes occur at every

second node, size three or larger nodes occur at every fourth node, and so on. Thus, a single

perfectly balanced list of length n = 2j has a size bounded by∑0≤k≤j
2j

2k = ∑
0≤k≤j 2j−k =∑

0≤l≤j 2l = 2j+1 − 1 = 2n− 1.

This linear result does not hold, however, when multiple lists share a common tail.

Figure 4.8 shows an example. It consists of a common tail that is n = 2i−1 nodes long and

m different nodes attached at the head of the common tail. Each head contains lg (n+ 1)

pointers. Thus, the tail has size 2n− 1 and the heads together have size 2m lg (n+ 1) for

a total size of 2n + 2m lg (n+ 1) − 1. This is asymptotically greater than linear in the

number of nodes. The size is still linear-logarithmically bounded by the number of nodes

since each node has no more than a logarithmic number of nodes following it.

Unlike a skip list, a Myers applicative random access stack [Myers, 1984] takes linear

space even when multiple stacks share the same tail. Instead of containing a variable

number of pointers in each node, a Myers stack always contains exactly two pointers in

each node. Thus, even when a set of stacks share tails, the total size is 2n where n is the

total number of nodes.

Remarkably, the structure of a Myers stack still allows the analysis to compute the

skipping function across any range in only O(logn) function compositions. Figure 4.9

shows the structure of a Myers stack. One can think of it as a flattening of a standard

51

4. Fast Flow Sensitivity

•...
•
•...
•
... • · · · •

•...
•

m

n = 2i − 1

Figure 4.8.: Skip lists sharing a tail

• • • • • • • • • • • • • • • •

Figure 4.9.: A Myers stack

52

4. Fast Flow Sensitivity

perfectly balanced skip list. Where a skip list has one node at index i with P (i) pointers,

a Myers stack has a cluster of P (i) nodes which each have two pointers. One pointer is

the next pointer and points to the next node in the stack. In Figure 4.9, the next pointers

are all shown with straight, horizontal arrows. The other pointer is the jump pointer and

points to the same node that the corresponding node in the skip list would. In Figure 4.9,

the jump pointers are all arcing arrows.

To traverse from any node in a Myers stack to any following node, follow the jump

pointer if it does not point past the destination and follow the next pointer otherwise.

This requires traversing only O(logn) pointers where n is the number of nodes after the

starting node. The proof of this follows similar reasoning to the case of perfectly balanced

skip lists. For details of the proof see Myers [1984].

To use a myers stack as a cache for the contextual skipping functions, the analysis stores

a skipping function along with each pointer. The next pointers store the skipping function

for single-layer contexts. The jump pointers store the composition of the skipping functions

in the range being jumped over. Since, as shown in Figure 4.9, each jump pointer jumps

over a next pointer followed by two other jump pointers, the skipping function associated

with a particular jump pointer is computed as the composition of those three functions.

Thus, when the cache is represented as a flow graph there are a linear number of nodes

because there are a linear number of pointers and associated skipping functions. Also there

are a linear number of flow-graph edges because each node for a jump pointer has exactly

three other nodes from which it is computed.

To summarize, a group of Myers stacks takes only O(n) space, where n is the total

number of nodes, even when tails are shared. They also allow traversal between any two

points in only O(logn) time. When a Myers stack is used as a cache for skipping functions,

each pointer is annotated with the appropriate skipping function. Thus, the cache takes

linear space in the number of nodes, and thus is linear in the size of the abstract syntax tree

53

4. Fast Flow Sensitivity

upon which the cache is overlaid. The next pointers are annotated with skipping functions

directly computed as in Figure 4.2 for the single layer contexts spanned by the pointers.

The jump pointers are computed from the composition of the functions associated with

the three contained pointers. When represented in a flow graph, the graph nodes for these

functions are thus linear in number, have a constant number of incoming edges per node,

and can be computed in constant time. Thus, the cache takes time and space linear in the

size of the program being analyzed.

While the skipping functions in the cache take only linear time and space, the skipping

functions computed from the cache each require the composition of up to logarithmically

many skipping functions. Since, as shown in Section 4.3, there are at most a linear number

of non-cached skipping functions thus computed, these function contribute no more than

O(n logn) time and space to the total time and space for the analysis. This is the only part

of the analysis that takes more than linear time or space. Future asymptotic improvements

here would directly improve the asymptotic performance of the whole analysis.

4.5. Algorithm Summary

Putting all these pieces together, the optimized algorithm works as follows. First, as

described in Section 4.4, the cache of skipping functions is constructed as a flow graph.

This creates linearly many nodes in linear time. Next, for each variable, context skips

are selected as described in Section 4.3 and flow-graph nodes are constructed that take

logarithmically many VC,e from the cache and build a VC,e for the skipped context. In

total there are linearly many context skips and each one involves composing logarithmically

many skipping functions. Each composition requires one flow-graph node, so this process

creates O(n logn) nodes in O(n logn) time. Finally, for each non-skipping point where a

variable is referenced or the constraint rules are used for a particular variable, a flow-graph

54

4. Fast Flow Sensitivity

node is constructed that computes the type of the variable at that point in terms of the

non-skipping points that flow to the point and the VC,e that skips from them to the non-

skipping point. A similar process is used for entering rather than exiting a context. Since

in total there are linearly many skipping points, this creates linearly many nodes. Overall,

this entire process takes linear-log time to construct the flow graph, and it produces a flow

graph with a linear-log number of nodes. The values flowing over the edges of the graph

all monotonically increase over constant-height lattices, and nodes recompute in terms of

their inputs in constant time. Thus, the flow-graph for the optimized analysis converges in

linear-log time.

As an example of this, consider the following expression where each Ci is a context that

does not contain x. Assume, each ei is an expression that does not contain x.

(if C1[(if C2[(if (pair? x) e1 e2)] (4.3)
C3[(car x)]
e3)]

e4
C4[(cdr x)])

The abstract syntax tree for this expression is as shown in Figure 4.10. Each Ci and ellipsis

is an elided context. We use the convention mentioned before and say that we compute a

value when we mean that a flow-graph node is constructed that computes the value.

The first step constructs flow-graph nodes to compute skipping functions over this tree

as described in Section 4.4. For example, the path from (pair? x) to the root is overlaid

by a Myers stack that contains flow-graph nodes for the skipping functions along the path.

Likewise, Myers stacks are constructed for e1, e2 and all the other expressions. These

Myers stacks share nodes when there are common tails. For example, (pair? x), e1 and

e2 all share a common tail, and (car x) also shares a tail but at a different point.

The second step selects which context skips to use for each variable, as described in

Section 4.3. Assuming x is not in any Ci or ei, the skips selected are those marked in

Figure 4.11. The actual expression does distinguish each Ci from any other expression, so

55

4. Fast Flow Sensitivity

if

C1

if

C2

if

(pair? x) e1 e2

C3

(car x)

e3

e4 C4

(cdr x)

Figure 4.10.: Example AST

if

C1

if

C2

if

(pair? x) e1 e2

C3

(car x)

e3

e4 C4

(cdr x)

Figure 4.11.: Example AST with skips

56

4. Fast Flow Sensitivity

(begin (car x1) (car x2) · · · (car xn) (cdr x1) (cdr x2) · · · (cdr xn))

Figure 4.12.: Worst case for Myers stacks

the skips are computed in terms of the lowest common ancestors of each reference to x.

The skips thus selected are the longest contexts not containing x.

Finally, to flow the value of x through the expression, a flow-graph node is constructed

that takes the types of x for both the true and false expression cases coming out of

(pair? x) and passes them to the skipping function computed for the context C2[(if �

e1 e2)]. Then, at the middle if, the standard constraint rules are used to flow the types

for x when C2[(if (pair? x) e1 e2)] is true back down to (car x). Leaving (car x),

we have a flow-graph node that applies the skipping function for C3 to the types for x

leaving (car x). Then the constraint rules for if are again used to flow the types of x up

and out of the middle if. Then again the skipping function for C1 is used to flow x up to

the outer if. Finally, the constraint rules are used to flow the types of x across the if and

down to the (cdr x).

An example of the worst-case, O(n logn) behavior consider Figure 4.12. It represents

a branch of an expression’s abstract syntax tree with 2n nodes. At each node, one of n

different variables is referenced and each variable is referenced at exactly two nodes that

are n steps apart. When the skipping cache is overlaid on this, it takes only O(n) space. To

compute the skipping function between two references to a particular xi requires composing

O(logn) skipping functions from the cache. Since the expression has O(n) variables which

each use O(logn) compositions, we thus have the O(n logn) worst case.

57

5. Example

Because it is difficult to get a good picture of how the algorithm works just from the

formal rules in Chapter 3 and the optimization to the algorithm described in Chapter 4,

this chapter walks through an example and shows the flow graph produced by the optimized

algorithm. The example is contrived to demonstrate several facets of the algorithm.

5.1. Code

This chapter uses the following code an example. The code contains examples of user-

defined unconditional functions (show-car) and conditional predicates (not-pair?). Pred-

icates and operators are deeply nested in both the test and consequent of conditionals.

Variables appear not only in both branches of tests but also only in one branch of tests.

The flow graph resulting from this example is fairly large and intricate, so it is presented

in stages and parts are simplified when they are not relevant to the optimized algorithm

in Chapter 4.

5.2. Abstract syntax tree

Figure 5.2 shows the abstract syntax tree corresponding to the code in Figure 5.1.

The let consists of variable bindings and a body. The left-hand sides are connected to

right-hand sides via dashed edges. The body is the rightmost child of the let.

58

5. Example

(let ([x (read)]
[y (read)]
[z (read)]
[not-pair? (lambda (a) (if (pair? a) #f #t))]
[show-car (lambda (b) (display (car b)))])

(if (if (if (if (if (if (not-pair? x) #f #t)
#f #t)

#f #t)
#f #t)

(if (read)
(if (read)

(if (read)
(begin (cadr x) (not-pair? y))
#f)

#f)
#f)

(begin (read) (read) (read) (show-car y) (not-pair? z)))
(begin (car x) (car y) (car z))
(begin (car x) (car y) (car z))))

Figure 5.1.: Example expression

59

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

Fi
gu

re
5.
2.
:A

bs
tr
ac
t
sy
nt
ax

tr
ee

60

5. Example

Constants such as #f or #t are represented by themselves.

Simple function calls such as (read) or (pair? a) do not have their internall structure

shown in this diagram as it does not affect the optimizations from Chapter 4. The only

complex function call, (display (car b)) is represented by app node with children for

the function and argument positions of the call.

The lambda functions are represented by a λ(x) node where x is the variable bound by

the function. The body of the function is the child of the λ(x) node.

The if conditional is represented by an if node that has three children. From left to

right, the children are the test, consequent and alternative expressions of the conditional.

Sequencing is represented by a seq node with two children. The left child is the first

expression to be evaluated. The right child is the second expression to be evaluated.

Scheme’s begin form is represented by nested seq nodes.

5.3. Value graphs

The flow graph for Figure 5.1 can be thought of as one portion for the reachability and

result values and another portion for variables. Figure 5.3 shows the first portion overladed

on top of the abstract syntax tree.

In Figure 5.3, each circle represents a flow-graph node, and each arrow represents a flow-

graph edge. An edge with a single-headed arrowhead is for reachability information. An

edge with a double-headed arrowhead is for expression result values. Finally, each node

contains a letter indicating its role in the analysis. The meanings of these letters are as

follows.

r: The reachability of an expression. This is used both for the root expression and the

body of each function. The root expression is always reachable. A function body is

reachable if and only if that function is called at some function call site.

61

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

r
v

f
f

f
λ

λ

b

r
v

f

s
j

c
c

r
v

c
f

a q

f

s

s

s

s

j

j

j

j

c

c

c

c

c

c

c

c

s
j

s s s

j j j

f f f f

c c c f

q

q

q

q

q

f

f

f f
f

s
j

q
q

q
q

f

f
f

f

f
f

Fi
gu

re
5.
3.
:V

al
ue

flo
w

62

5. Example

v: The result value of an expression. It is used both for the root expression and the body

of each function. For a function body, it is used at function call sites to determine

the return value of the function.

f: A function call. The edge going into the node determines whether the call is reachable.

The edge going out of the function call contains the return value of the call. The

nodes presented here are simplified to avoid complicating the figures.

c: A constant. The edge going into the node determines whether the constant is reachable

and the edge going out of the node contains the value returned by the constant.

λ: A function. The edge going into the node determines the reachability of the function

construction, and the edge going out of the node contains the closure constructed

by the function. The body of the function is not connected to this node as the

reachability and result of the function body interact with function calls and not

function construction.

a: A function application. The two edges going into the application contain the function

and argument for the function application. The edge going out is the return value of

the function application.

b: The reachability of the body of a let. It is > if and only if the right-hand side of every

binding in the let returns a value that is not ⊥.

s: The reachability of the consequent and alternative of an if. The edge into the node is

the result value of the test part of the if. The two edges going out of the node are

the reachability of the consequent and alternative of the if. If the test part returns

any true values, the consequent is reachable. If the test part returns any false values,

the alternative is reachable.

63

5. Example

j: The result value of an if. The two edges going into the node contain the result values

of the consequent and alternative of the if. The result value of the if is computed

by joining these values with t. The edge going out of the node is the result value of

the if.

q: The reachability of the second expression of a seq. The edge going into the node

contains the result value of the first expression of the seq. The edge going out of

the node determines whether the second expression of the seq is reachable. It is

reachable if and only if the first expression returns a value that is not ⊥.

For each occurrence of a particular type of expression, the same set of nodes is created.

For example, each if has both s and j nodes, and each seq as one q node. Thus, the size

of the flow graph for values is linear in the size of the abstract syntax tree.

5.4. Context cache

Figure 5.4 shows the complete cache of contextual skipping functions as described in Sec-

tion 4.4. The figure shows the jump edges of the Myers stacks that traverse each path of

the abstract syntax tree. The next edges are omitted from the diagram. There is a next

edge for each single-layer context in the abstract syntax tree.

With the exception of the root, each expression has exactly one jump edge coming

out of it. Thus, the number of jump edges is linear in the size of the abstract syntax

tree. Additionally, each jump edge contains either a single-layer context or is comprised

of a single-layer context and two other jump edges. For example, the jump edge from

(not-pair? x) up to the root is comprised of a single-layer context across the if that

is the parent of (not-pair? x), the jump edge from that if up and across the if that

is the fourth ancestor of (not-pair? x), and the jump edge from the fourth ancestor of

(not-pair? x) up and across the root.

64

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

Fi
gu

re
5.
4.
:C

ac
he

of
co
nt
ex
ts

65

5. Example

These properties, which are guaranteed by the Myers stack construction, ensure that the

cache both takes linear time to construct and only logarithmic time to update.

5.5. Variables

The parts of the flow graph for values and the contextual skipping functions, are variable

independent. What remains is to define the flow graphs for each variable.

5.5.1. Flow graph for x

The variable x is referenced in both (not-pair? x) and (show-car x). The first is deeply

nested in the test part of a stack of if expressions. The second part is deeply nested in the

consequent part of a stack of if expressions. The type information about x when the first

stack returns true needs to be computed and used by the reference to x in (show-car x)

in the second stack.

In order to do this efficiently, the first step is to calculate which contexts should be

skipped for x based on the selection process described in Section 4.3. The lowest common

ancestors that are selected for x are circled in Figure 5.5. The thick-lined arrows mark the

contexts that are selected for skipping. The lower of the two circled if nodes contains two

references to x. This means that Theorem 4.3 does not apply to it and it cannot be skipped.

Once this if is selected, the rest of the context selection algorithm treats it opaquely and

counts it as a single reference to x. Thus, the upper of the two circled if expressions is

selected because it contains both the lower if, which counts for one reference, and (car x),

which counts for a second reference. The skips that are selected by this process go from

the references to x up to the circled abstract syntax tree nodes. Normally, there would also

be a context selected for skipping from the lower if to the upper if, but because they are

adjacent, that context is empty and thus is omitted.

66

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

Fi
gu

re
5.
5.
:C

on
te
xt

sk
ip
pi
ng

fo
r

x

67

5. Example

To compute the skipping function for each of the selected skipping contexts, the appro-

priate contexts from the skipping function cache are composed. The thin lined arrows in

Figure 5.5 show the contextual skipping functions that are taken from the skipping func-

tion cache and composed to form the selected contexts. These cached skips may in turn be

composed of other skips in the cache. In the worse case, the skips for the selected contexts

is composed from logarithmically many skips from the cache.

Once the selected skips are constructed, the type information for x flows through the

program using those contexts, as shown in Figure 5.6. Recall that by Theorem 4.6, variables

can freely skip down an expression, so the value for x moves directly from its binding site

to (not-pair? x). Then the skipping function is used to move x from (not-pair? x)

up to the fourth ancestor of (not-pair? x). If decomposed fully, this skipping function

is composed of four single-layer contextual skipping functions corresponding to the if

expressions being skipped. Three of theses expressions return #f in the consequent and

#t in the alternative and thus each swap the values for the true and false cases. One of

these expressions returns #t in the consequent and #f in the alternative and thus passes

the values for the true and false cases through unchanged. Hence, the composition of these

four skips is equivalent to a single swap. This swap, when applied to the type information

about x coming from (not-pair? x), results in the information that when the fourth

ancestor of (not-pair? x) returns true, x is a pair and when it returns false, x is not a

pair. This result is stored in the node marked V.

Next, the fifth ancestor of (not-pair? x) is one of the common ancestors marked for

x, so the usual constraint rules are used there instead of the skipping functions. Thus, the

value from the V node moves to the s node, and the s node splits the type information

about x into the true and false parts. The true part is sent to the consequent, and the false

part is sent to the alternative. In this case, that means that x is known to be a pair in the

consequent and a non-pair in the alternative.

68

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

f

s
j

f

V

f

V

s

f
f

s

Fi
gu

re
5.
6.
:F

lo
w

gr
ap

h
fo
r

x

69

5. Example

In the consequent, the type information for x flows directly down to (cadr x) per

Theorem 4.6. Then it flows back up again using the selected skipping function. As before,

the constraint rules are used for manipulating the type information at the fifth ancestor of

(not-pair? x). The j node joins the information from the consequent, which indicates

that x is a pair in both the true and false cases, with the information from the alternative.

Since the alternative has no references to x, that information is taken directly from what

the s node sent to the alternative. In this case, it says that in the alternative x is a non-pair

for both the true and false cases. Joining information from both branches results in the

knowledge that, in the true case, x may be a pair due to the consequent or a non-pair due

to the alternative. Likewise, in the false case, x may or may not be a pair.

The flow of information proceeds in a similar manner on through the sixth ancestor of

(not-pair? x) and to the (car x) and (cdr x).

5.5.2. Flow graph for y

The process for y is similar to the process for x, and is only slightly different. As with x,

the first step to processing y is to select skipping contexts and construct skipping functions

for those contexts. Figure 5.7 shows the equivalent of Figure 5.5 but for y instead of x.

The process and notational conventions are identical to the process and conventions for y.

Once the selected skipping contexts are constructed, the type information for y flows

through the program using those contexts as shown in Figure 5.8. As with x, the value

of y flows directly down from its binding site. However, y is in both the consequent

and alternative of the lower of the two circled if expressions instead of the test and

consequent. There is no sequential ordering between the consequent and alternative, so y

flows from its binding site directly to both the consequent and alternative instead of first

to the consequent and then to the alternative. Thus, on entry to both the consequent and

alternative, y remains at >.

70

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

Fi
gu

re
5.
7.
:C

on
te
xt

sk
ip
pi
ng

fo
r

y

71

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

f

j

f

V

s

f
f

f

V

s

Fi
gu

re
5.
8.
:F

lo
w

gr
ap

h
fo
r

y

72

5. Example

After (not-pair? y) in the consequent, y is known to be a pair if the expression returns

false and a non-pair if the expression returns true. The skipping function for the context

that goes from (not-pair? y) up to and over the fourth ancestor of (not-pair? y)

modifies this. The part that skips over the seq behaves as the identity. For the intervening

if, the skipping function accounts for the possibility that each of the (read) calls in the

if expressions may return either true or false. If (read) returns false, the alternative of

the corresponding if returns #t. Thus, when one of these if returns a true value, it could

be from either not-pair? or #t. On the other hand, when one of these if returns a false

value it can only be from not-pair?. The end result is that, at the V node, nothing is

known about y if the corresponding if returns true, but y is known to be a pair if it returns

false.1

A similar process occurs for (show-car y). It is, however, slightly simpler, since

show-car unconditionally restricts y to be a pair. Even if it did not, the skipping function

moving out of the first expression of a seq erases all conditional information by joining the

true and false information using the t operator. In any case, the information for y at the

V node records that y is always a pair when exiting the corresponding if.

At this point, when exiting the fourth ancestor of (not-pair? y), y is known to be a

pair if the fourth ancestor returns false, but nothing is known if the fourth ancestor returns

true. When exiting the fourth ancestor of (show-car y), y is known to always be a pair.

The constraint rules take this information to compute the value of y when exiting the fifth

ancestor by joining the two results. Thus, when exiting the fifth ancestor, y is known to

be a pair in the false case, but nothing is known in the true case.

This information flows to the s node, which sends the information for the true case to

the consequent and the information for the false case to the alternative. Thus, at (car y),

1A similar contextual skipping function applies to x, but in that case x is already known to be a pair due
to the (not-pair? x), so that detail was omitted when describing the information flow for x.

73

5. Example

nothing is known about y, and the type check is still needed. At (cdr y), y is known to

be a pair and no type check is needed.

5.5.3. Flow graph for z

As before, the first step to processing z is to select skipping contexts and construct skipping

functions for those contexts. The result of this is shown in Figure 5.9. The circled if is

the lowest common ancestor of any two occurrences of z. The selected skipping context in

this case is constructed from three other skipping contexts. The two with thin solid lines

come from jump edges in the cache. The one with dashed lines comes from a next edge in

the cache.

Once the selected skipping contexts are constructed, the type information for z flows

through the program using those contexts as shown in Figure 5.10. The process is almost

identical to the process for x and y with one major difference: the contextual skipping func-

tion for flowing from (not-pair? z) up to and over the fifth ancestor of (not-pair? z)

must account for the possibility that the if may take the consequent instead of the alter-

native. In the case of x and y, this was accounted for because the constraint rules were

used instead of the contextual skipping function. In the case of z, however, the contextual

skipping function must account for this. This is why in Figure 4.2 the contextual skipping

function takes three input types rather than just two. The first two types are for when the

expression returns true and false respectively. The third type is the type when entering

the expression and handles cases like this. In this case the contextual skipping function

records the fact that, since the consequent returns both true and false values, whatever

type z has when entering this expression is potentially part of the output of this expression

in both the true and false cases. If the fifth ancestor returned only true or only false values,

the type of z when entering the expression would be part of only the true or false cases

respectively. Though this is a trivial observation in this example, when these situations

74

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

Fi
gu

re
5.
9.
:C

on
te
xt

sk
ip
pi
ng

fo
r

z

75

5. Example

le
t

x

(r
ea

d)

y

(r
ea

d)

z

(r
ea

d)

no
t-

pa
ir

?

λ
(a

)

if

(p
ai

r?
a)

#f
#t

sh
ow

-c
ar

λ
(b

)

ap
p

di
sp

la
y

(c
ar

b)

if

if

if

if

if

if

(n
ot

-p
ai

r?
x)

#t
#f#f

#t#f
#t#f

#t

if

(r
ea

d)
if

(r
ea

d)
if

(r
ea

d)
se

q

(c
ad

r
x)

(n
ot

-p
ai

r?
y)

#t#t#t

se
q

(r
ea

d)
se

q

(r
ea

d)
se

q

(r
ea

d)
se

q

(s
ho

w-
ca

r
y)

(n
ot

-p
ai

r?
z)

se
q

(c
ar

x)
se

q

(c
ar

y)
(c

ar
z)

se
q

(c
dr

x)
se

q

(c
dr

y)
(c

dr
z)

f

V

s

f
f

f

s

Fi
gu

re
5.
10

.:
Fl
ow

gr
ap

h
fo
r

z

76

5. Example

are in the middle of a larger selected skipping context, it is important to account for this

possible execution path.

Aside from this subtlety, the flow graph for z behaves similarly to the flow graphs for x

and y.

5.5.4. Other variables

Flow graphs for not-pair?, show-car, a, and b are constructed following exactly the

same process as for x, y, and z. They are omitted here as they do not illustrate anything

noteworthy.

5.6. Result

Once the flow graph is constructed, it is processed using the standard technique described

in Section 2.2 for evaluating a flow graph. Once the flow graph stabilizes, the following

is information is learned. All calls to not-pair? and show-car are known calls to their

respective functions. The (cadr x) expression always has a pair value for x and does not

need a pair check, but (car x) may or may not be called on a pair value and thus needs a

pair check. The (car y) expression always has a non-pair value for y, but (cdr y) may or

may not be called on a pair value and thus needs a pair check. Both (car z) and (cdr z)

need pair checks, since z may or may not be a pair at those points.

From one perspective, it might appear that the analysis did poorly on this example as

it was able to determine non-top types only for (cadr x) and (car y). From another

perspective, however, the analysis performed perfectly. The places where the analysis

cannot determine the exact results are due to the semantics of the program and not due

to approximations made by the analysis. Depending on the return values of each of the

read calls, the program actually could have either pair or non-pair values in every place

77

5. Example

that the analysis could not determine a precise value. In this sense, the analysis performs

excellently. The benchmarks in Chapter 7 study the performance of the analysis in more

detail.

78

6. Implementation

The CFA algorithm described in Chapter 4 has been implemented as an experimental

optimization for the Chez Scheme [Dybvig, 2010] compiler. It is used to perform type

recovery and justify the elimination of run-time type checks. The implementation supports

the full Scheme language and successfully compiles and runs both Chez Scheme itself and

the entire Chez Scheme test suite without errors.

6.1. Implementation structure

To implement type recovery, a post-processing pass is added after the CFA pass. The post-

processing pass uses the type information gathered during the CFA pass to determine where

run-time type checks are unnecessary. Primitive calls where some or all of the run-time

type checks are unnecessary are replaced by an “unsafe” variant that does not perform the

unnecessary run-time type checks. For instance, (car x) is replaced by (unsafe-car x)

when x is determined to be a pair. If a primitive makes multiple run-time type checks and

only some of those type checks can be omitted, then a “semi-unsafe” variant is used. These

cases arise when a primitive does more than one run-time type check or when the checks

involve information not tracked by the analysis. For example, a vector range check cannot

be eliminated because the analysis does not track the lengths of vectors. Another example

is when the analysis determines that the vector argument of a vector-ref is always a

vector but not that the index argument is always a nonnegative exact integer.

79

6. Implementation

6.2. Implementation notes

The implementation handles a variety of language constructs and features that are not

described in Chapter 4. Among these are mutable variables and the unspecified order of

evaluation for function call arguments and let bindings.

A mutable variable’s type can change between where type information is recovered and

it is used. For instance, an intervening function call could arbitrarily mutate the variable

and invalidate what is learned.1 Thus, for mutable variables, the implementation gathers

only constructive information.

The unspecified order of evaluation for function-call arguments and let bindings can be

handled by choosing a fixed evaluation order prior to this analysis. At present, however, the

decision is made later in the compiler, during register allocation. The analysis therefore

processes function-call arguments independently, as it does for the branches of an if.

While the resulting environments are unioned for if, they are intersected for function-call

arguments. The bindings of let are handled similarly.

6.3. Order of evaluation

As defined in Chapter 3 always assumes a left to right order of evaluation between function

arguments. However, because the Chez Scheme compiler determines order of evaluation

after the analysis runs, the analysis implemented for Chez Scheme does not assume a

particular order of evaluation. For example in an expression like (f (car x) (cdr x)),

the analysis is agnostic about whether car or cdr is evaluated first. This has the advantage

of giving later passes of the compiler the freedom to choose the order of evaluation, but also

has the disadvantage of preventing the analysis from eliminating the implicit type checks

1This issue arises only in higher-order languages. The analysis can process restrictive information for
mutable variables in first-order languages, including, for example, the output language of a closure-
conversion pass in a typical compiler for a higher-order language.

80

6. Implementation

Expressions: e ∈ Exp = . . . | let x = e in e | letrec x = e in e

Contexts: C ∈ Ctxt = . . . | (let x = � in e) | (let x = e in �)
| (letrec x = � in e) | (letrec x = e in �)

Jlet x = e0 in e1Kin w 〈r̂, ρ̂〉 letin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (let x = � in e1)
letmid

Je1Kin w 〈>, (ρ̂t t ρ̂f) [x 7→ v̂0]〉

letout

Jlet x = e0 in e1Kout w Je1Kout

Jletrec x = e0 in e1Kin w 〈r̂, ρ̂〉 letrecin

Je0Kin w 〈r̂, ρ̂〉

Je0Kout w 〈v̂0, ρ̂t, ρ̂f 〉 K(e0) = (letrec x = � in e1)
letrecmid

Je1Kin w 〈>, (ρ̂t t ρ̂f) [x 7→ v̂0]〉 Je0Kin w 〈>, (ρ̂t t ρ̂f) [x 7→ v̂0]〉

letrecout

Jletrec x = e0 in e1Kout w Je1Kout

Figure 6.1.: Rules for let and letrec

in either car or cdr. With a fixed order of evaluation on the other hand, say left to right,

the car is certain to evaluate before the cdr. Thus, the cdr can only be reached if x is a

pair, and the implicit pair check in the cdr can be eliminated.

Arbitrarily fixing an order of evaluation is quite easy, but it would be far better to

chose an evaluation order based for each expression based on how many type checks the

particular order allows the analysis to eliminate. How to achieve this is a question that

deserves further research.

81

6. Implementation

6.4. Local binding

Both let and letrec are implemented via the obvious extensions. The flow rules for these

are shown in Figure 6.1.

Note that, (let ([x e1]) e2) learns more information than the usually equivalent ex-

pression ((lambda (x) e2) e1). With let, the analysis uses observational information

from e1 and passes it to e2. With lambda, however, the environment passed to e2 is the

one from the construction of the function by lambda. If a function call evaluates e1 before

(lambda (x) e2), then the lambda and thus e2 see the observational information from

e1. However, with an indeterminate order of evaluation for application, e2 cannot use

information learned from e1 as the lambda may be evaluated before e1.

The implementation of this analysis includes a preprocessing pass that converts from the

lambda form to the equivalent let form to ensure that as much information as possible

is learned from this expression. This is equivalent to fixing the order of evaluation to be

from right to left for these expressions, but avoids needing a special case in the code for

function applications.

When the right-hand sides of a let do not mention any of the variables bound by the let,

it is nearly equivalent to a letrec. The only difference is the handling of continuations.

Thus, in order to avoid code redundancies between let and letrec, the implementation

converts all let expressions into letrec expressions. Since all variables are uniquely named

(Section 2.1.1), none of the variables bound by the let occur in the right-hand sides and

this is a valid transformation. A post-processing pass converts these letrec expressions

back to let expressions [Waddell et al., 2005]. This expedient simplifies the implementation

for research purposes, but in a full scale implementation it should be replaced with separate

handling of let and letrec forms.

82

6. Implementation

6.5. Lambda

Full Scheme includes a more powerful form of lambda than in Figure 2.1 or Figure 3.1. It

includes both variable argument forms and case-lambda forms.

Variable argument forms The variable argument form in Scheme allows a function to take

n or more arguments rather than exactly n arguments. In this case, the extra arguments

are bundled into a list and bound to an extra parameter. If a function call passes n + m

arguments, the first n formal parameters are bound to the first n arguments as usual, and

the final parameter is bound to a list of the last m arguments.

To handle these extra arguments, each function application must check how many argu-

ments the function expects and whether it uses the variable argument form of lambda.

If the variable argument form is not used, processing is just as before. If the variable

argument form is used, however, the analysis must consider three cases.

In the first case, the function requires more arguments than the application provides.

The function call then triggers an error at run time and thus the analysis does not flow

any values from the call to the formal parameters.

In the second case, the function requires the exact same number of arguments as the call

provides. At run time, the extra parameter receives the empty list and thus the analysis

adds the empty-list type to the input type of the extra parameter. It also checks whether

the true and false output types of the extra parameter contain the empty-list type. If they

do, the function can return to the function application. Otherwise, it can not.

In the final case, the function requires fewer arguments than the application provides.

At run time the extra parameter will receive a non-empty list and thus the analysis adds

the pair type to the input type of the extra parameter. Likewise, it also checks whether

the true and false output types of the extra parameter contain the pair type. If they do,

the function can return to the function application. Otherwise, it can not.

83

6. Implementation

Case-lambda The case-lambda form generalizes of the usual lambda form by including

multiple clauses. Each clause contains both formal parameters and a body. When the

function is called, which clause executes depends on the number of arguments provided

by the function call. Each clause is sequentially checked, and the first clause is used

that either does not use the variable argument form and expects the exact number of

arguments that the function application provides or that does use the variable argument

form and requires fewer arguments than the function application provides. Once the clause

is selected, execution proceeds as usual.

In order to handle this, the analysis takes advantage of the fact that, given the number

of arguments provided by the function call, it can call at most one of the causes. Then it

is simply a matter of efficiently determining which clause of the case-lambda a particular

function call uses. The analysis does via a preprocessing pass that builds a table for each

case-lambda. The ith element of this table points to the clause that should be invoked by

a function call with i arguments. The table also stores a default clause to use when there

are more arguments in a function application than there are entries in the table. Thus,

finding the correct clause of a case-lambda takes O(1) time. Computing this table in only

O(n logn) time takes a careful engineering but is fairly straightforward.

6.6. Smart primitives

In the general case, functions like + and call/cc provide very little information about

their return values. Without knowing anything more about their arguments, the best we

can say is that + returns some sort of number. We know nothing about the return value

of call/cc. However, if a particular invocation of + always passes integer values in, the

return value will be an integer value. Likewise, the result of (call/cc f) will be the

return value of f joined with the arguments of the continuation that is passed to f. Both

84

6. Implementation

of these more general situations can be handled by “smart” primitives that contain code

to compute return types rather than having a static return type.

For example, when the type of an argument passed to an occurrence of + is updated, the

code for + calculates the potential return types and updates its return type appropriately.

Thus, if an occurrence of + is passed only positive integers, the return type will be positive

integers. On the other hand if the arguments are floating-point numbers, the return type

will be the type of floating-point numbers.

The same technique works for call/cc. Each occurrence of call/cc creates a function

object that represents the continuation that is passed to the argument of call/cc. For

example, consider the continuation passed to f in (call/cc f). When the function type

representing this continuation is applied to an argument, the input types of its argument

are updated. This in turn notifies call/cc, which updates its return value to contain the

types that could be passed to the continuation.

6.7. Mutable variables

When a variable is mutated, it is not a safe approximation to ignore the mutation, since

the value might become a value not approximated by the original value. For example, in

Example 6.1, ignoring the set! inside f would lead to the conclusion that x is a pair at

the call to car.

(let ([x (read)]) (6.1)
(let ([f (lambda () (set! x 2))])

(car x)
(f)
(cdr x)))

The analysis assumes that information from inside function calls such as (f) can be safely

ignored. When the variable is immutable, the function cannot change the value, so all

information about a variable before the call is still valid after the call. The worst that

85

6. Implementation

happens is the analysis computes a less precise value than if it used information from

inside function calls. However, this is not the case when the function can change the value.

In this example, f changes the type of x from being a pair to being a number.

To deal with this the analysis adjusts the value seen at the binding site of a mutable

variable to include all values that set! stores into the variable. It then ignores all restrictive

information about mutable variables. Thus, the analysis collects only constructive and not

restrictive information about mutable variables.

This problem is well known in the static analysis domain as the strong update prob-

lem [Lhoták and Chung, 2011] and is not a problem particular to the analysis presented

in this dissertation. Standard solutions to the strong update problem or using known call

information [Adams et al., 1986, Appel and Jim, 1989] may help deal with this, but such

solutions are beyond the scope of this dissertation.

Note that a solution to the strong update problem may lead to improvements in the

precision of the analysis even when dealing with immutable variables. For example, consider

the following expression.

(let ([x (read)]) (6.2)
(let ([f (lambda () (car x))])

(f)
(cdr x)))

The analysis described here does not detect that x must be a pair after exiting f. Thus, it

misses the opportunity to eliminate the type check in (cdr x). In a sense, the car assigns

to the type that the analysis knows for x by restricting the type of x to only pairs. Thus,

a method of accounting for strong update is likely to generalize to also handle cases like

this.

86

7. Benchmarks

7.1. Effectiveness

The effectiveness of the type-recovery algorithm was tested on a standard set of Scheme

benchmarks [Clinger, 2008]. Each test was run both with type recovery enabled and with

type recovery disabled. The number of type checks performed in these two cases were then

compared with each other. The tests look only at type checks caused by pair and vector

primitives such as car, cdr, cadr, vector-ref, or vector-set!. An average of 69% of

type checks are eliminated from the code, which results in 55% fewer type checks at run-

time. These results were compared with a flow-insensitive version of this analysis, which

performed significantly worse, eliminating 41% of run-time type checks. The results of the

flow-sensitive sub-0CFA were also compared with the results of a flow-sensitive 0CFA. The

0CFA version performed about the same, also eliminating 55% of type checks at run time.

A flow-insensitive 0CFA performed better than the flow-insensitive sub-0CFA, eliminating

48% of run-time type checks. Figure 7.1 compares the average percent of type checks

eliminated for the flow-insensitive sub-0CFA, flow-insensitive 0CFA, flow-sensitive sub-

0CFA, flow-sensitive 0CFA. Figure 7.2 and Figure 7.3 give the percent of checks eliminated

for each individual program.

While these results are promising, they are not necessarily a good predictor for how well

type-recovery performs in general. Using the same set of tests, and counting only the checks

87

7. Benchmarks

0%

20%

40%

60%

80%

100%

Flow-insensitive

sub-0CFA

Flow-insensitive

0CFA

Flow-sensitive

sub-0CFA

Flow-sensitive

0CFA

Figure 7.1.: Average percent of type checks removed

made by pair primitives, only 36% of checks are eliminated, resulting in the elimination

30% of run-time checks. Pairs are a hard case for type-recovery. While vectors store a

number of items, pairs store only two. At best, we ordinarily expect to see a call to car

paired with a call to cdr and can eliminate only one of the two type checks. In operations

such as cadr and cddr only the first of two pair checks can be eliminated. This is because

the contents of pairs are not tracked by the analysis. It cannot determine that the cdr of

a pair is also a pair. The nested pair must always be type checked. Also, with proper lists,

it is common to use an explicit null? check to detect the end of the list. Unfortunately,

the null? check does not eliminate the need for the pair? checks implicit in car and cdr,

since it tells the analysis only that the value is not null. Beyond the difficulties in handling

pairs, some opportunities for eliminating type checks are already handled by the source

optimizer before getting to the type recovery analysis.

88

7. Benchmarks

Although the analysis does not require the order of evaluation of let bindings and

function-call arguments to be specified, type information learned in one argument or bind-

ing might be useful for eliminating a type check in another argument or binding. For

instance, in (f (car x) (cdr x)), a specified evaluation order would allow the implicit

pair check to be eliminated from one of the two argument expressions. To determine the

impact of fixing the order of operations, the tests were run with both left-to-right and

right-to-left evaluation orders. In both cases, although the benefit is significant in a few

cases, the average number of type checks at run time improved by only a few percent.

These results are encouraging, and refinements of the analysis should further improve

the optimization’s effectiveness. The analysis currently treats all pairs and all vectors the

same, although it could treat each occurrence of cons and make-vector in the source code

as a separate element in the lattice analogously to the way it handles lambda expressions,

and thus get more information about the contents of pairs and vectors.

7.2. Efficiency

Beyond the effectiveness of the analysis, its asymptotic behavior was verified and its speed

measured by counting the number of source tree nodes on input to the type-recovery

algorithm and measuring the time it takes for the algorithm to run. For this test, the

same benchmarks were used as before, along with compilation units that comprise the

Chez Scheme compiler. Figure 7.4 plots these times on a logarithmic scale along with

linear (lower) and linear-log (upper) reference lines. The quantization at the lower end of

the graph results from timer granularity. The graph shows that the processing times trend

between the linear and worst-case linear-log lines as expected. The type recovery is also

acceptably fast, handling 100,000 AST nodes (approximately 30,000 lines of code) in less

than a second for the largest of the programs. Averaging over all of the programs, the

89

7. Benchmarks

implementation handles about 281,500 AST nodes (approximately 100,000 lines of code)

per second.

90

7. Benchmarks

0%

20%

40%

60%

80%

100%

ack
array1

bibfreq

bibfreq2

brow
se

bv2string

cat
cat2

cat3
cpstak

ctak
com

piler

conform

dderiv

deriv
destruc

diviter

Sub-0CFA flow-insensitive
0CFA flow-insensitive

Sub-0CFA flow-sensitive
0CFA flow-sensitive

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

divrec

dynam
ic

earley

equal

fft fib fibc
fibfp

graphs

hashtable0

listsort

gcbench

lattice

m
atrix

m
aze

m
azefun

m
brot

Sub-0CFA flow-insensitive
0CFA flow-insensitive

Sub-0CFA flow-sensitive
0CFA flow-sensitive

Figure 7.2.: Percent of type checks removed

91

7. Benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m
brotZ

m
perm

nboyer

norm
alization

nqueens

ntakl

nucleic

paraffins

parsing

peval

pi pnpoly

prim
es

puzzle

quicksort

ray
read0

Sub-0CFA flow-insensitive
0CFA flow-insensitive

Sub-0CFA flow-sensitive
0CFA flow-sensitive

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

read1

read2

read3

sboyer

string

sum
sum

1

sum
fp

tail
tak

w
c

schem
e

sim
plex

slatex

takl
triangl

vecsort

Sub-0CFA flow-insensitive
0CFA flow-insensitive

Sub-0CFA flow-sensitive
0CFA flow-sensitive

Figure 7.3.: Percent of type checks removed

92

7. Benchmarks

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000

T
im

e

AST node count

Figure 7.4.: Source node count versus analysis time

93

8. Related Work

8.1. CFA and CFA-based type recovery

Shivers [1991] uses an extension of 0CFA to perform type recovery. Instead of directly

discovering type information about variables, he adds a level of indirection and discov-

ers information about the quantity a variable contains. This approach allows information

learned about one variable to be shared with its aliases but leads to potential correctness

problems if multiple quantities flow to the same variable. Shivers addresses this by intro-

ducing a reflow semantics to correct for the problems caused by the indirection around

quantities. The analysis presented in this dissertation does not handle quantity informa-

tion and instead relies on a pass earlier in the compiler that performs copy propagation

and aggressive inlining. This keeps the analysis relatively simple while still yielding some

of the benefits of his quantities. Since it is based on 0CFA rather than sub-0CFA, Shivers’s

analysis is more precise though asymptotically more expensive than the analysis in this

dissertation.

Serrano [1995] argues that 0CFA is useful in compilers for functional languages by pre-

senting two use cases: an analysis for reducing closure allocation and an analysis for re-

ducing dynamic type tests. Serrano reports that the latter algorithm eliminates 65% of

dynamic type tests. This differs from the results in Chapter 7, which show that a 0CFA-

based analysis eliminates only 43% of type tests. The difference is likely attributable to

94

8. Related Work

different set of benchmarks being used, different strategies for inserting and counting type

checks, and different optimizations leading into the analysis. As it is based on 0CFA,

Serrano’s analysis takes O
(
n3) time in the worst case.

Heintze and McAllester [1997c] describe a linear-time CFA. It is specifically targeted at

typed languages and assumes bounds on the sizes of types. In linear time it can list up to

a constant number of targets for all call sites, and in quadratic time it can list all targets

for all call sites. Mossin [1998] independently developed a similar quadratic analysis for

explicitly typed programs based on higher-order flow graphs. Whereas these analyses are

based on inclusion, Henglein’s simple closure analysis [Henglein, 1992b] computes a cruder

approximation based on equality constraints and can be solved in almost linear time via

unification. None of these analyses are flow sensitive.

The notion of sub-0CFA defined in Section 2.4 is close to that of Ashley and Dybvig

[1998]. They effectively use a more restrictive lattice but provide a general framework

through which more general lattices can be constructed. Their analysis achieves a limited

form of flow sensitivity when the test of an if is a type predicate applied to a variable by

creating new bindings for the variable in the then and else parts of the if whose abstract

values are restricted by the test. They also describe a more general form of flow sensitivity

that tracks variable assignments. It does not gather observational information from nested

conditionals, type-restricted primitives, or user-defined functions, and they do not make

any claims about its asymptotic behavior.

8.2. Type recovery based on type inference

Soft typing [Cartwright and Fagan, 1991] and more recently, gradual typing [Siek and Taha,

2006] are designed to produce, through type inference, statically well-typed programs from

dynamically typed programs by introducing run-time checks or casts. CFA-based type

95

8. Related Work

recovery can be seen as an alternative mechanism for accomplishing a similar effect. While

soft typing and gradual type systems might reject some programs, the CFA-based analysis

never rejects programs, because type errors are semantically required to cause run-time

exceptions.

Henglein [1992a] presents a fast O(nα (n)) tagging optimization algorithm for Scheme.

Using the terminology of Steenkiste [1991], the goal of the algorithm is to statically elimi-

nate dynamic tag insertion and tag removal operations. In contrast, the analysis presented

in this dissertation seeks to eliminate dynamic tag checks. (Values in Chez Scheme are

always tagged as the garbage collector relies upon them.) Henglein reports that his algo-

rithm is able to eliminate around 40% of the executed tag insertion operations and around

55% of the executed tag removal operations across six non-numerical operations. Although

related, these numbers are not comparable to the number of eliminated tag checking op-

erations reported in Chapter 7. In a companion paper, Henglein [1994] treats the theory

of dynamic typing in the form of a calculus with explicit type coercions and an equational

theory.

The concept of occurrence typing developed in the context of Typed Scheme [Tobin-

Hochstadt and Felleisen, 2010], is closely related to the present analysis in that different

occurrences of the same variable are typed differently depending on the control flow through

type-testing predicates. The type system of Typed Scheme expresses types as formulas in a

propositional logic that has some similarities to the lattice structure underlying the analysis

presented in this dissertation.

8.3. Recent type-recovery applications

Jensen et al. [2009] develop a type analysis for JavaScript. Their analysis is context-

sensitive and incorporates both recency abstraction and abstract garbage collection. They

96

8. Related Work

focus, however, on precision over computational complexity. As a result, their analysis

sometimes requires a few minutes to process JavaScript programs of only several hundred

lines.

Vardoulakis and Shivers [2010] describe a summarization-based CFA with a degree of flow

sensitivity. In addition to precise call-return matching, their analysis models precisely the

top stack frame of arguments. However, their focus is more on precision than efficiency.

The analysis has since been re-targeted to JavaScript in the form of DoctorJS [Mozilla

Corporation, 2011].

For type checking dynamically typed programs, Guha et al. [2011] combine a type system

and a flow analysis such that the latter boosts the precision of the former. Like the analysis

in this dissertation, their flow analysis is flow-sensitive and computes tag sets for each

occurrence of a variable. However, it is not interprocedural. Instead it relies on the type

system at function boundaries. It has a quadratic worst-case time complexity.

8.4. Other related work

To prove soundness of the analysis, the concretization framework of abstract interpreta-

tion [Cousot and Cousot, 1992] can be used. Cousot and Cousot [1979] originally used

traces (paths) over a flow graph to prove soundness of classical data-flow analyses. Flow

graphs were later generalized to transition systems [Cousot, 1981], and paths were extended

to traces thereof.

Wegman and Zadeck [1991] formulated fast constant propagation algorithms for a first-

order imperative language. Their conditional constant propagation relates to the analysis

in this dissertation in that they track reachability and may gain information from a test

in a conditional. Wegman and Zadeck list elimination of run-time type checks in a LISP

dialect as a possible use case of their approach. Whereas they consider multiple ways to

97

8. Related Work

handle functions, including aliasing of pass-by-reference parameters, they do not consider

how to handle first-class functions.

As an illustration of a general property simulation algorithm in ESP, Das et al. [2002]

instantiate their general framework to a flow-sensitive constant-propagation algorithm.

The resulting work-list algorithm is polynomial, however, as it involves invoking a theorem

prover at each conditional expression for symbolic evaluation.

98

9. Future Work

The research presented in this dissertation leaves many areas undeveloped that are worth

exploration. This chapter outlines potential future directions for research, which not only

improve the precision and performance of the analysis but also use the techniques developed

in this research to improve results in other domains.

9.1. User-defined types

Two limitations of the current analysis are that it does not intelligently handle user-defined

types such as those generated by the R6RS define-record-type [Sperber et al., 2007] and

that the internal structure of objects such as pairs or vectors is not tracked.

Adding support for user defined types must be done carefully. If we simply give each

user defined type a fresh tag element in T̂ag, then the resulting type lattice would be

linear in the number of types in the program. Thus, in a program of size n, which defines

O(n) types, the lattice would have a height that is O(n) in size of the program. This

linear height lattice voids the O(n logn) time bound. This situation gets even worse with

generative types, which in R6RS allow the generation of an arbitrary number of types at

run time.

To resolve this we can use the same trick as was used with procedures. Rather than

splitting V̂al into two parts, F̂un and T̂ag, we split it into three parts, F̂un, T̂ag and a new

part for user-defined types. Then, just as in Section 2.4, we can impose a flattened lattice

99

9. Future Work

>

PAIR λ

PAIR1 PAIR2 · · · PAIRn λ1 λ2 · · · λm · · ·

⊥

Figure 9.1.: Lattice for rich types

over the user-defined types. However, it might not be a good idea to flatten the lattice to

only a single layer as multiple user-defined types may flow to the same expression more

often than multiple procedure do. Instead, it may be advisable to use some other lattice

that has a bounded height and that takes into account relationships between types such

as inheritance or the expression from which generated types come.

9.2. Objects and rich types

Not tracking the contents of objects like pairs, vectors, or user defined types causes the

contents to not only be approximated by > but also to escape. An example is the following

expression.

(let ([x (cons 2 ’())]) (+ 1 (car x))) (9.1)

Here (car x) will always evaluate to the number 2. However, since the analysis currently

abstracts all pairs to the single PAIR tag, the analysis cannot determine this. We could add

a richer type system such as those used in Typed Racket [Tobin-Hochstadt and Felleisen,

2010] but we must be careful to bound the sizes of our types. Otherwise, the analysis may

loose its O(n logn) bound.

As an alternative, we could use the same technique as is already used for functions.

Rather than inferring a type for a function, control-flow analysis uses the function itself

100

9. Future Work

as the type. Similarly, we can use the construction location of a pair, vector, or record as

the type of an object [Ashley and Dybvig, 1998]. Each construction location then contains

information about the values that objects constructed at that location may contain. In

Example 9.1 the information would indicate that the pair constructed by the cons has a

numeric value as its first element and null as its second element.

As with user-defined types this could also cause the lattice of types to be linear in the

size of the program and thus break the O(n logn) bound. The same techniques used there

should also solve this issue. However in this case it may be advisable to use a lattice like

the one shown in Figure 9.1. Each construction site for a pair would have its own type

such as one of PAIR1, PAIR2, and so on, but when more than one pair flows to the same

place, the lattice goes up only to the generic PAIR type rather then going to >.

An added complication of adding pairs is that the fields within them are mutable. How-

ever, the techniques for mutable variables in Section 6.7 should be sufficient to solve this

problem.

9.3. Asymptotic improvements

As currently expressed, the analysis takes O(n logn) time. The only part of the analysis

that is not linear, however, is the use of the skipping functions from the cache to construct

the skipping functions for the contexts selected in Section 4.3. An asymptotic improvement

to this part of the analysis would improve the asymptotic performance of the entire analysis.

While at present there is no obvious method of improving this bound, it is a tempting target

for future research given that it is the only part preventing a linear-time analysis.

101

9. Future Work

9.4. Loops and general control flow

While the basic analysis in Chapter 3 is suitable for unstructured programs, the optimiza-

tions in Chapter 4 work only on structured programs, i.e., programs which, except for

function calls, have planar, acyclic control flow graphs. This is sufficient for Scheme as

Scheme’s loops are expressed in terms of function calls. However, many languages have

loops which introduce cycles or jumps that introduce non-planarity. Further, a direct han-

dling of loops and jumps is likely to yield more precise results than encoding them as

function calls.

In order to generalize the analysis to handle these cases, the selection and computation

of contextual skipping functions needs to be generalized. In the case of loops, skipping

functions need to handle when variables flow back into themselves, and preliminary work

indicates the feasibility of the approach. However, it is unclear whether the algorithm can

be generalized to non-planar graphs.

9.5. Static single assignment form

Static single-assignment form (SSA) is a well known and common method of restructuring

a program [Rosen et al., 1988, Alpern et al., 1988]. However, converting a program to

SSA form can increase the size of a program up to O
(
n2) where n is the size of the

original program [Cytron et al., 1991]. This size increase is due to the introduction of

potentially quadratically many φ-nodes into the program. These φ-nodes serve a similar

purpose to the contexts selected by the context selection algorithm in Section 4.3, and

the context selection algorithm can be viewed as an alternative to SSA that offers the

advantage of taking only linear space in the worst case and thus does not asymptotically

increase the size of the program. Thus, the representation used here may be quite useful

for implementing other typical compiler optimizations and algorithms and would result in

102

9. Future Work

a lower asymptotic bound for those operations. In the general case, this works only if loops

and non-structured graphs can be handled. Thus, the handling of loops and general graphs

discussed in Section 9.4 has implications beyond the control-flow analysis described in this

dissertation. If the techniques in Chapter 4 do not generalize to cyclic and non-planar

graphs, then SSA is still useful for programs that exhibit those structures. However, if

they do generalize, then they are a viable alternative to SSA.

9.6. Sub-kCFA

Sub-0CFA is essentially the same as 0CFA except that a widening operator is used to ensure

better asymptotic bounds. Variants of CFA that store more contextual information about

a function call, such as 1CFA, offer better precision but at the cost of performance. For

example, 1CFA is EXPTIME complete. In order to gain the advantage of precision from

more contextual information without paying the performance costs, it may be possible to

apply the same widening trick that sub-0CFA uses. It is likely that the widening operator

needs to work over contexts in addition to types, but the basics of the theory would be

similar. In this way the techniques developed here to achieve an O(n logn) asymptotic

bound could be ported to other analyses.

9.7. Generalized skipping functions

The analysis presented here tracks only the relationship between the truth value returned

by an expression and the types of variables. This concept can be generalized. Instead of

storing two environments with an expression, one for when the expression is true and one

for when the expression is false, the analysis can store one environment per type that the

expression returns. Or more naturally, it can store a function that maps from a return

type to the environment that must hold when that type is returned from the expression.

103

9. Future Work

To match this generalization, the output types of function arguments must also change to

have a value for each variable for each type that the function can return. Care must be

taken with this construction to avoid increasing the lattice height, but otherwise it is fairly

straightforward.

This generalization has several advantages. First, the rules for application become sig-

nificantly simplified. As they are currently, each sub-expression of an application has to

be handled differently depending on whether it is a variable or not. For example, this is

done in the ARG function. By generalizing, these rules can be more uniform and do not

need special cases for variables.

Second, as a consequence of eliminating the special case for variables, a more pre-

cise analysis becomes possible. For example, without the generalization, the expression

(pair? (begin e1 x)) would not provide any information about x, but with the general-

ization, it would gather as much information as (begin e1 (pair? x)). Another common

case is (not (pair? x)). Since not is a function instead of a macro in Scheme, without the

generalization, this expression gathers no information about x, but with the generalization,

it gathers just as much information as (if (pair? x) #f #t).

Finally, this generalization allows the implementation of an efficient backwards abstract

interpretation as described in Section 9.8.

To implement this, care must be taken to ensure the lattice over the function mapping

types to environments, has a bounded-height lattice. For example, if each procedure type

had its own environment, then it could break the linear-log time bound. Even if the lattice

is arranged to prevent breaking the asymptotic time bound, we must be careful that the

constants in a practical implementation do not grow too large. Doing this efficiently might

be challenging.

104

9. Future Work

9.8. Backwards abstract interpretation

The connection between abstract interpretation [Cousot and Cousot, 1977, 1979] and

control-flow analysis is well known [Midtgaard and Jensen, 2008], but what Cousot and

Cousot [1999] refer to as backwards abstract interpretation has a particularly close con-

nections to the control-flow analysis defined here. With standard, forwards abstract inter-

pretation, the potential values of sub-expressions are used to discover the potential values

of enclosing expressions. For example, in (if (pair? x) e1 e2), the potential values of x

are used to determine the potential values of (pair? x), which in turn determine if e1 and

e2 are reachable. However, backwards abstract interpretation starts with potential values

of enclosing expressions and deduces potential values of sub-expressions. For example the

enclosing if will pass control to e1 only if (pair? x) returns true. Also (pair? x) returns

true only if x is a pair. This then allows the analysis to conclude that x must be a pair if

e1 is reachable.

The analysis presented in this dissertation achieves the same effect. However, combining

both forwards and backwards abstract reasoning usually requires alternating between the

two as the system uses information from one to incrementally improve the other. The

analysis presented in Chapter 3 avoids this alternation. Instead of deriving backwards

from the possible values of an expression to the possible values of the sub-expressions, each

expression directly produces information about sub-expressions given the possible values

of the expression. For example, (pair? x) has that x is a pair in the true case and that x

is not a pair in the false case.

This trick is a simple one. In fact it is also used with attribute grammars [Knuth, 1968]

where inherited properties can be encoded as higher order synthetic properties. In the

analysis, however, it not only avoids needing to alternate between backward and forward

modes, but as shown in Chapter 4 it also allows an efficient implementation of the analysis.

105

9. Future Work

It is worth further research to study how these results translate from control-flow analysis

to abstract interpretation.

106

10. Conclusion

This dissertation describes a flow-sensitive type-recovery algorithm based on sub-0CFA

that runs in linear-log time. It justifies, on average, the removal of about 60% of run-time

type checks in a standard set of benchmarks for the dynamically typed language Scheme.

It handles, on average 100,000 lines of code in less then a second.

Research in this area often focuses on developing higher precision analyses at the cost of

worst-case performance. Often this is excused by saying that the algorithm, while having

bad worst-case performance, performs well “in practice”.

There is some justification to this as higher precision analyses often do “in practice”

perform better because a more precise approximation means less time analyzing code paths

that cannot actually occur [Might and Shivers, 2006].

However, we need to ask ourselves whether we want an analysis that is guaranteed to

perform well but in a few cases is less precise, or an analysis that offers a slightly better

precision but does not guarantee performance. Both sorts of analyses may “in practice”

be both precise and perform well. It is a question of whether the analysis should sacrifice

performance or precision for worst-case inputs. From a compiler optimization perspective,

“lots of little bullets” is often better then one big bullet [Peyton Jones et al., 1996]. One

big bullet can miss, but lots of little bullets are unlikely to all miss.

I conjecture that many existing analyses can be modified to add a time bound guarantee

if we are willing to accept some loss of precision on worst-case inputs. Research into

107

10. Conclusion

higher precision analyses should include studying how to limit the computation time of the

analysis. In some cases, like the transition from 0CFA to sub-0CFA, adding such a time

bound is fairly direct and easy. There is little excuse for not showing how to bound the

time in these cases. In others, like the flow sensitivity implemented in this dissertation, it

may be much harder, but the results are likely to advance the state of the art.

The implementation conservatively handles the unspecified evaluation order of arguments

and bindings. Making evaluation-order decisions earlier in the compiler would allow the

analysis to produce more precise information, particularly if the decisions were influenced

by the needs of the analysis. Experiments show that the typical benefit is likely to be

minimal, but the benefit in some cases would be substantial.

Employing an extended lattice that differentiates pairs and vectors based on their al-

location sites as the analysis already does for functions, should also lead to more precise

information. In a statically typed variant of the analysis, the lattice can also be refined to

differentiate functions with different static types. Even in a dynamically typed language,

functions can be grouped by arity.

Another avenue for further investigation is to supplement the current techniques with

an efficient must-alias analysis, such that for two aliased variables x and y, information

learned about x is reflected in y. The higher-order must-alias analysis by Jagannathan

et al. [1998] is a natural starting point for such an investigation.

Finally, I conjecture that the same techniques used to extend sub-0CFA with flow sen-

sitivity can be applied more generally to kCFA with the addition of a single logarithmic

factor to the asymptotic cost.

108

A. Source Code Overview

The complete source code implementing the analysis described in this dissertation is in-

cluded in appendix B. It is also available in digital form from the author upon request and

at the following URL:

http://www.cs.indiana.edu/∼adamsmd/phd/

The remainder of appendix gives a short overview of the code to help orient the reader

who wants to understand the code. Indexes to file, function, macro and record names are

included at the end of this dissertation.

A.1. Using the code

The code runs and is tested under Chez Scheme 8.3. It should also run on other versions

and other Scheme systems that support R6RS [Sperber et al., 2007]. In a few cases, Chez

Scheme specific forms may need to be ported if using another Scheme system.

The simplest way to start experimenting with the code is to load and import driver.ss

with (import (driver)) at the REPL. Once loaded, it defines the run function which

takes an S-expression as input and runs the analysis on the input. For example, the input

(run ’(let ([x (read)]) (car x) (if (pair? x) 1 2)))

returns the following output.

(letrec ([x.1 (read)])
(begin (car x.1) (begin (pair? x.1) ’1)))

109

http://www.cs.indiana.edu/~adamsmd/phd/

A. Source Code Overview

The tests.ss file also contains a few basic tests of the analysis. After importing the

(tests) library, calling (run-tests) will run all tests and print a report of which ones

produced their expected output.

The run function uses a simplistic parser defined in parse-scheme.ss. For more deep

integration with a compiler, the function run-type-recovery takes an already parsed

expression in the form of a Trex record (see Section A.3.1). This function is the entry

point to the algorithm used by the driver. The run function in driver.ss is merely a

wrapper around run-type-recovery with a parser from S-expressions to Trex records.

A.2. Algorithm

The main algorithm starts at run-type-recovery in type-recovery.ss. In addition

to construction the flow graph (see Section A.2.2), it also does preprocessing (see Sec-

tion A.2.1) and post-processing (see Section A.2.3) to prepare the input for the construction

of the flow graph and utilize the flow graph results, respectively.

A.2.1. Preprocessing

Before the flow graphs are constructed a bit of preprocessing is done. First, transform-let

in transform-let.ss replaces any occurance of ((lambda (var . . .) body) arg . . .) with

(letrec ([var arg]. . .) body) in order to force the order of evaluation between arg and

body as discussed in Section 6.3. The letrec form is used here since the analysis assumes

all bindings in the input have unique variable names. In that case, letrec is a correct

implementation of let except for the differences in handling continuations. By having only

the letrec form, the code becomes simpler and has one fewer case to handle. This makes

implementing this research prototype easier, but before production use, the implementation

needs to be changed to distinguish between the two.

110

A. Source Code Overview

Next, the algorithm places a wrapper around the expression to mark that the result of the

expression should be marked as escaped (see Section 2.3) with escape-top-level-lambda.

Then the Trex record is converted to an AST record via the Trex->AST function defined in

ast.ss (see Section A.3.2). During the process of conversion, a Myers stack is constructed

starting at each AST node and going up to the root of the AST record.

Finally, make-AST-bubbles from ast-bubbles.ss preprocesses the AST record to deter-

mine what contexts to skip based on the rules described in Section 4.3. In the process,

the locations where each identifier is referenced are collected using tree-locations.ss.

These locations are stored in ident-asts and ident-locations. The ident-locations

help compute the “bubble” calculations efficiently. The ident-asts are used elsewhere in

the algorithm.

A.2.2. Flow-graph construction

Flow-graph construction is the heart of the algorithm and is done in three passes. In

the first pass, the environmental flow-graph nodes are constructed as unforced, lazy flow-

graph nodes. In the second, the value flow-graph nodes are constructed. Finally, the

environmental flow-graph nodes are forced. See Section A.3.3 for an explanation of flow

graphs and lazy nodes. While both sorts of flow graph nodes could be constructed in a

single pass, constructing them separately simplifies the code.

A.2.2.1. Environmental flow-graph nodes

The environmental flow graph nodes are those that deal with computing the environmental

flow functions described in Section 4.1. They are computed by make-env-flow-graph

in env-flow-graphs.ss. The flow of environments entering an expression reduces to

simple reachability, so only the environmental flow of environments exiting an expression

is computed. These environmental flow functions are stored in the generalization of Myers

111

A. Source Code Overview

stacks described in Section 4.4 and defined in composition-stacks.ss. These generalized

Myers stacks extend the standard Myers stacks defined in myers-stacks.ss store not only

the nodes for single steps up the AST as defined in Figure 4.2, but also nodes for the

compositions of those steps. Later, when computing the value flow-graph nodes, these are

used to construct nodes for moving variable value information from one location to another

in the program.

A.2.2.2. Value flow-graph nodes

Computing the flow-graph nodes for everything other than the environmental flow is the

responsibility of make-value-flow-graph in value-flow-graphs.ss. This function recurs

over the AST and computes the necessary parts of the graph.

A complication is that, while the environmental flow nodes already exist, the function

still must construct nodes to flow individual variables through the program. This is done

by storing a record in each identifier that describes the last reference from which values

should flow. These are stored in the ident-preceding-ref field as either an up-ref or

down-ref record depending on whether the last reference was flowing out of or into an

expression respectively. Then the move-var-to-here function, which is called at the end

of each recursive call for each variable identified by make-AST-bubbles, uses the nodes for

environmental flow to compute the result of flowing such variables through the program.

This gets further complicated with the right-hand sides of letrec or the arguments of

function calls. These have to be computed independently because the analysis does not

assume a particular order of evaluation. A similar problem occurs between the then and

else branches of if with the primary differences being the values need to be unioned rather

than intersected. The solution involves careful manipulation of the indent-previous-ref

fields. The parallel*, parallel-loop and parallel-intersected macros provide ab-

stractions for this.

112

A. Source Code Overview

The value flow calculations for each of the expression forms generally follow the obvious

implementation based on the rules in Figure 3.5. Nevertheless, the code for function appli-

cation is quite complicated. Not only does it take care of the callin, callfun, callmid,

and callout rules, which are the most complicated rules in Figure 3.5, but the applica-

tion form in Scheme is much more complicated than the one presented in Figure 3.1. For

example, we have indeterminate order of evaluation, case-lambda, and variable argument

forms. The code for functions and function calls is complicated relative to the rest of the

code. While desirable, it is not yet clear how to more simply express this part of the code.

When constructing the value flow graph, the nodes for references to primitives are cal-

culated based on a table in prims.ss.

A.2.3. Post-processing

Once both the environmental and value flow-graph nodes are constructed, the algorithm

is almost complete. All that remains is to step the flow graph with flow-graph-step!

until the graph stabilizes and flow-graph-stable? returns true. Then AST->Trex from

ast-unparse.ss converts the AST record back to a Trex record. In the process it applies

optimizations based on the information learned about values and variables.

A.3. Data types

A.3.1. Trex records

The tprogram.ss file defines the type of Trex records using the define-datatype form (see

Section A.4.1). They are used in the external interface to the analysis. Internally AST

records are used.

113

A. Source Code Overview

A.3.2. Abstract syntax trees

The ast.ss file defines the type of abstract syntax trees used by the analysis. It defines

them via the define-datatype form (see Section A.4.1). AST node types are as follows:

Ref Variable references

Quote Constants

Primref References to built-in primitive functions

Set Variable assignments

App Function applications

If Conditionals

CaseLambda Lambda abstractions of both case-lambda and lambda forms

Seq Sequential execution

LetRec Recursive let binding, i.e., letrec.

In addition to the data specific to each node type, e.g., the identifier of a set!, every node

includes the following meta-data:

src Meta-data such as source information that is passed through the analysis unchanged.

output-node The flow-graph node corresponding to the output of this AST object.

contained-nodes A list of flow-graph nodes constructed for this AST object. Used for

debugging.

context A Myers stack containing the path from the AST object back to the root of the

tree as described in Section 4.4.

114

A. Source Code Overview

graph-context A Myers stack containing the path from the AST object back to the root

of the tree that is annotated with environmental flow functions as described in Sec-

tion 4.4.

graph-context-thunk A thunk used to delay part of the construction of the graph-context.

bubble-vars The list of identifiers that that bubble algorithm annotated this node with.

These identifiers indicate which contexts to skip for each var as described in Sec-

tion 4.3.

tree-start-location Used internally by make-AST-bubbles.

tree-end-location Used internally by make-AST-bubbles.

A.3.3. Flow graphs

A general framework for flow graphs is defined in flow-graphs.ss. A flow graph is created

with make-flow-graph. Then after the appropriate flow-graph nodes are added to the

graph, the flow-graph-step! function is used to make the flow graph take one step and

update a single node. Whether there are more nodes that need updating is determined

by the flow-graph-stable? function. The flow-graph-print function is for debugging

purposes and outputs GraphVis dot files [Gansner and North, 2000] for visualizing the flow

graph.

Each flow graph node has both an output value accessible with flow-graph-node-output

and arbitrary meta-data accessible with flow-graph-node-info. Every flow graph node

also takes an eqv? predicate at construction time that takes two output values from the

flow graph node and returns true if and only if they are equal. This is used to determine

whether the output of a node has changed and nodes that depend on the node need to be

put on the work list. In addition, when a flow graph node is first constructed, the eqv?

115

A. Source Code Overview

function is called with the initial output of the node passed as both arguments. This allows

the detection of more type errors at node creation time, rather than later when the flow

graph is being stepped.

There are four kinds of flow graph nodes that can be constructed:

– A function node is constructed with make-flow-graph-function-node and is the

most common type of node. It takes a function and a list of nodes that the newly

created node depends upon. Whenever one of the nodes that are depended upon is

updated, the function is applied to the output values of the nodes depended upon.

The result of the function application then becomes the new output value of the node.

– A lazy node is constructed with make-flow-graph-lazy-node and is like a function

node except that the nodes that it depends upon are specified at a later time with

flow-graph-lazy-node-force!. This allows the construction of flow graphs that

contain cycles. All lazy nodes should be forced before calling flow-graph-step!.

– A mutable node is constructed with make-flow-graph-mutable-node. This node has

no input and its output is manually modified with flow-graph-mutable-node-set!.

Care must be taken with this node type to ensure that its output value obeys the

rules for flow-graph nodes.

– A join node is constructed with make-flow-graph-join-node and is a higher-order

node. It takes as argument, A, a flow graph node that it depends upon. It expects

the output of A to be another flow graph node, A∗. The output value of A∗ upon

becomes the output of the join node. This construction, though unusual, allows the

analysis to analyze function calls, and account for dependencies that are not known

when the flow graph is constructed.

The performance of the flow-graph framework defined can likely be improved by eliminating

the large number of higher order function calls and indirects used within it.

116

A. Source Code Overview

A.3.4. AST flow graphs

Since most of the flow graphs are attached to AST nodes, the ast-flow-graphs.ss file

provides several helpers to simplify the use of flow graphs with AST nodes.

A.3.5. Identifiers

Identifiers are represented with the ident record type defined in idents.ss. Each identifier

contains the following fields:

name An object that uniquely identifies the ident.

symbol-name A symbol used for pretty-printing.

assigned A boolean that is true if and only if the ident is mutated.

number A unique integer used for sorting ident values.

asts A list of Ref and Set records that reference this ident.

locations Used internally by make-AST-bubbles.

preceding-ref Used at graph construction time to store the last reference to the ident.

It is always either an up-ref or a down-ref record.

binding-node The output node of the value to which the ident is bound. For example,

if bound by a letrec, it is the output node of the binding’s right-hand side.

A.3.6. Types

Types are represented by the type record in types.ss, which contains both a proc field

for the procedure part of the type and a non-proc field for the non-procedure part of the

type. The non-proc field is a bit mask using bits defined with the define-mask-bits

117

A. Source Code Overview

form. The proc field contains either bot-proc-type-bits representing the ⊥ element of

the procedure lattice, top-proc-type-bits representing the > elements of the procedure

lattice, or an object created with one-or-more-proc-type-bits representing an element

of the procedure lattice containing one or more procedures.

All of these type forms have intersection, union, equality, and lattice comparison (i. e., v)

defined for them. In addition many constants and helper functions for manipulating or

converting these types are defined.

Finally, since a type for a true case and a false case are so often manipulated together,

bitype.ss defines a representation of two types bundled together.

A.3.7. Environmental flow functions

The env-flow-functions.ss file defines environmental flow functions of the sort specified

in Section 4.1. The zero, identity, composition, and application to bitype records are all

defined. For efficiency reasons, environmental flow functions are represented as bit masks.

A.4. Auxiliary code

Some parts of the source code are not part of the core algorithm but are worth mentioning

even though they are merely utility code.

A.4.1. datatype.ss

This file defines the define-datatype form. This form defines record types that model an

algebraic data type (ADT) and is used to define both AST and Trex records. Its general

form is

(define-datatype (adt-name prop . . .) (constructor-name field . . .). . .)

where a prop is either (prop-name default) or (prop-name default type), and a field

is either a field-name or (field-name type).

118

A. Source Code Overview

The adt-name defines the name of the ADT. It is used to define a type predicate which

will be named record-name? that returns true if and only if its argument is of type

adt-name. Its also used to define a case construct for the ADT.

Each prop defines a property that every ADT object has. The prop-name is used to define

accessors and mutators named adt-name-prop-name and adt-name-prop-name-set!

respectively. The default is the value that the property has when the ADT object is

constructed and is required as constructors do not take properties as arguments. The

type, if present, is a predicate that returns true only for values of the correct type for the

property and is used by the property mutators to check the type to which the property is

set.

Each (constructor-name field . . .) clause defines a new constructor for the ADT. The

constructor-name is used to define the function for constructing a value of that type

as well as a predicate to test for values of that type. The name of the constructor is

constructor-name and the name of the predicate is constructor-name?. Each field spec-

ifies an argument to the constructor. If present, the type is a predicate that returns true

only for values of the correct type for the field and is used by the constructor to check the

type of a field value passed to it.

Finally, for each ADT, a case form is defined with the following syntax.

(adt-name-case expr [(constructor-name field-binding . . .) body]. . .
[else else-body])

The expr, body and else-body sub-forms are expressions. A constructor-name is the name

of one of the constructors and a field-binding is an identifier. The else clause may be

omitted. if is not present, then every constructor-name in the ADT must be present in

the case form, but order does not matter. If a constructor-name is missing and there is

no else clause, compile-time exception is raised.

119

A. Source Code Overview

The expr must return an ADT object. If the ADT object is constructed from a listed

constructor-name, each field-binding is bound to the corresponding field originally passed

to the constructor, and the corresponding body is executed. If no constructor-name

matches, then the else-body is executed.

Finally, this file also defines list-of, vector-of, and improper-list-of, each of which

takes a predicate and returns a predicate that returns true if and only if its argument is

a list, vector, or improper list that contains elements for which the argument predicate

returns true.

A.4.2. records-io.ss

This file exports the record-writer and record-reader forms defined in Chez Scheme [Dy-

bvig, 2010] which tell the pretty printer how to print certain record types. The purpose

this library is to making porting to other systems easier. In order to port to a system that

does not have record-writer and record-reader forms, this library needs to be replaced

with one that defines them as no-ops. However, without the overrides that record-writer

and record-reader provide, care must be taken when when printing AST records as they

contain both cycles and large amounts of meta-data.

A.4.3. define-ignored.ss

This file defines the define-ignored macro. This macro expands expressions that are of

the form (define-ignored expr) into (define ignored expr), where ignored is a fresh

variable name. This form is used in a number of places in the code when the side effects

of expr are needed without changing from definition context to expression context [see

Sperber et al., 2007, section 11.3].

120

A. Source Code Overview

A.4.4. iota.ss

This file defines an iota function that takes a single non-negative integer as argument and

returns a list of integers from zero up to but not including the argument.

A.4.5. safe-forms.ss

This file defines safer, alternate versions of if, cond, and case. The if does not allow

one-armed forms. The cond raises an error if no cases of the cond succeed. The case raises

an error if no cases match. The case also allows bare symbols in match clauses. These are

all modified from the forms in Appendix B of Sperber et al. [2007].

A.4.6. syntax-helpers.ss

This file defines several functions that make it easier to write syntax-case macros [Dybvig

et al., 1993]. The syntax-ellipses? function returns true if and only if its argument is

the syntax object for ellepsis. The syntax-indexes function maps a syntax-object like

(a b c) to a syntax object with each element annotated with its index in the object

such as ((0 . a) (1 . b) (2 . c)). The other functions (syntax-length, syntax-car,

syntax-cdr, syntax-map, syntax-for-all, and syntax-append) are similar to their list

counterparts (length, car, cdr, map, for-all, and append) but operate on syntax objects

rather than lists.

A.5. Third-party code

A.5.1. srfi-39.ss

This file implements the subset of “SRFI 39: Parameter objects” [Feeley, 2003], that is

needed by the code. If your Scheme implementation has a native form of parameters, you

can substitute that for this library.

121

A. Source Code Overview

A.5.2. match.ss

This file implements an S-expression based pattern matcher. See the following URL for

details on the syntax of the matcher.

http://www.cs.indiana.edu/chezscheme/match/

122

http://www.cs.indiana.edu/chezscheme/match/

B. Source Code

This appendix includes a source listing of the code that implements the analysis described

in this dissertation. This code is provided for informative purposes only and should be

considered research quality software. It includes both instrumentation code and code that

needs performance tuning. It is not production ready software.

B.1. Software license

The following copyright and license applies to all code in this appendix with the exception

of match.ss. The copyright and license for match.ss are contained in match.ss itself.

Copyright © 2009-2011 by Michael D. Adams, Andrew W. Keep, and R. Kent Dybvig
Permission to use, copy, modify, and/or distribute this software for any purpose

with or without fee is hereby granted, provided that the above copyright notice and
this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANYDAMAGESWHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CON-
TRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

123

B. Source Code

B.2. Algorithm

Listing B.1: driver.ss� �
(library (driver)

(export run)
(import (rnrs) (type-recovery) (parse-scheme))

5 (define (run expr) (unparse-scheme (run-type-recovery (parse-scheme expr))))

)� �
Listing B.2: type-recovery.ss� �

(library (type-recovery)
(export run-type-recovery)
(import (rnrs) (ast) (ast-flow-graphs)

(ast-bubbles) (ast-unparse) (env-flow-graphs) (value-flow-graphs)
5 (flow-graphs) (transform-let) (types) (prefix (tprogram) Trex:))

(define (escape-top-level-lambda x)
(Trex:App #f (Trex:Primref #f #f ’escape) (list x)))

10 ;; Trex -> Trex
(define (run-type-recovery trex)

(let ([flow-graph (make-flow-graph)])
(with-AST-flow-graph flow-graph

(let ([ast (Trex->AST (escape-top-level-lambda (transform-let trex)))])
15 (make-AST-bubbles ast)

;; create the flow graph nodes
(make-env-flow-graph ast)
(make-value-flow-graph ast)

20 (env-flow-graph-force! ast)

;; run the flow graph
(let loop ()

(unless (flow-graph-stable? flow-graph)
25 (flow-graph-step! flow-graph)

(loop)))

(AST->Trex ast)))))

30)� �
Listing B.3: parse-scheme.ss� �

(library (parse-scheme)
(export parse-scheme parse-unsafe-scheme unparse-scheme)
(import (rnrs) (tprogram) (match) (idents))

124

B. Source Code

5 ;; This module parses s-expressions into Trex records . It is for demonstration
;; purposes only and should not be considered a robust scheme parser .

;; unique-name produces a unique name derived the input name by
;; adding a unique suffix of the form .< digit> +.

10 (define unique-name
(let ([count 0])

(lambda (sym)
(set! count (+ count 1))
(string->symbol

15 (string-append (symbol->string sym) "." (number->string count))))))

;; improper-map -- helper function for getting a list of unique variables
;; when we get imporper formals lists .
(define (improper-map f ls . more)

20 (if (null? more)
(let map1 ((ls ls))

(cond
[(null? ls) ’()]
[(pair? ls) (cons (f (car ls)) (map1 (cdr ls)))]

25 [else (f ls)]))
(let map-more ((ls ls) (more more))

(cond
[(null? ls) ’()]
[(pair? ls) (cons (apply f (car ls) (map car more))

30 (map-more (cdr ls) (map cdr more)))]
[else (apply f ls more)]))))

(define (improper-memq s ls)
(cond

35 [(null? ls) #f]
[(and (pair? ls) (eq? s (car ls))) (cdr ls)]
[(pair? ls) (improper-memq s (cdr ls))]
[else (and (eq? s ls) ’())]))

40 (define who ’parse-scheme)

;; parse-scheme accepts a single value , verifies that the value
;; is a valid program in the source language , replaces bound variables
;; with unique variables , and simplifies several kinds of expressions .

45 ;;
;; The grammar changes from Assignment 14 in that it allows unquoted
;; fixnum , boolean , and empty-list constants ; variables are arbitrary
;; symbols ; lambda , let , and letrec bodies are implicit begin expressions ;
;; one-armed if expressions are allowed ; unquoted fixnums and booleans

50 ;; are allowed ; quoted vector / list structure is allowed ; " and " expressions
;; are allowed ; and "or" expressions are allowed . In addition , "not " is
;; included in the set of primitives .
;;
;; Program --> <Expr>

55 ;; Expr --> <prim>
;; | <constant>
;; | <var>
;; | (quote <datum>)
;; | (if <Expr> <Expr>)

60 ;; | (if <Expr> <Expr> <Expr>)
;; | (and <Expr> *)
;; | (or <Expr> *)
;; | (begin <Expr> * <Expr>)

125

B. Source Code

;; | (lambda (< var> *) <Expr> +)
65 ;; | (let ([< var> <Expr>]*) <Expr> +)

;; | (letrec ([< var> <Expr>]*) <Expr> +)
;; | (set! <var> <Expr>)
;; | (< Expr> <Expr> *)
;;

70 ;; Where constant is #t, #f, () , a symbol or an exact integer
;; var is an arbitrary symbol
;; datum is a constant , pair of datums , or vector of datums
;; primitives are void , error , read (zero arguments); car , cdr ,
;; vector-length , make-vector , not , boolean ?, integer ?, bignum ?,

75 ;; fixnum ?, null ?, pair ?, procedure ?, symbol ?, vector ?
;; (one argument); *, +, -, /, <, <=, =, >=, >, fx*, fx+, fx- ,
;; fx/, fx <, fx <=, fx=, fx> =, fx> , cons , vector-ref , eq?,
;; set-car !, set-cdr ! (two arguments); and vector-set !
;; (three arguments).

80 ;;
;; A var may not be bound multiple times by the same lambda , let , or
;; letrec expression , but a var may be bound by multiple lambda , let ,
;; and letrec expressions , with its scope determined via the usual
;; Scheme rules . No names are reserved , so a keyword or primitive name

85 ;; loses its special meaning within a the scope of a lambda , let , or
;; letrec binding binding of the name .

(define (make-seq expr*)
(define (strip-begin-seq expr*)

90 (match ‘(begin ,@expr *)
[(begin ,[expr*] ...) (apply append expr*)]
[(seq ,[expr*] ...) (apply append expr*)]
[,expr (list expr)]))

(define (make-seq expr*)
95 (match expr*

[(,x) x]
[(,x* ... ,x) (Seq #f (make-seq x*) x)]))

(make-seq (strip-begin-seq expr*)))

100 ;;; expr -> var
;;; (quote src datum)
;;; (primref src safe name)
;;; (set! src var expr)
;;; (app src expr expr *)

105 ;;; (if src test then else)
;;; (case-lambda src clause *)
;;; (seq src expr expr)
;;; (letrec src ([var expr]) expr)
;;; (type / expr src expr ty key stuff ...) ; unconditionally evaluate expr ,

110
(define (verify-var-list x*)

(let loop ([x* x*])
(cond
[(null? x*) #f]

115 [(pair? x*)
(let ([x (car x*)] [x* (cdr x*)])

(unless (or (symbol? x) (ident? x))
(assertion-violation who "invalid␣list␣found" x))

(when (improper-memq x x*)
120 (assertion-violation who "non-unique␣var␣list␣found" x))

(loop x*))]
[else (unless (or (symbol? x*) (ident? x*))

126

B. Source Code

(assertion-violation who "invalid␣var␣list␣found" x*))])))

125 (define (constant? x)
(or (memq x ’(#t #f ())) (and (integer? x) (exact? x)) (string? x) (char? x)))

(define (datum? x)
(or (constant? x)

130 (symbol? x)
(if (pair? x)

(and (datum? (car x)) (datum? (cdr x)))
(and (vector? x) (for-all datum? (vector->list x))))))

135 (define (uvar-maker sym) (unique-name sym))
(define (make-uvar-ident symbol)

(let ([x (uvar-maker symbol)]) (make-ident x x #f)))
(define (wrap-var v) (if (ident? v) v (make-uvar-ident v)))
(define (unique-var) (make-uvar-ident ’t))

140
(define empty-env ’())
(define (extend env id x) (if (ident? id) env (cons (cons id x) env)))
(define (lookup id env) (cond [(assq id env) => cdr] [else id]))

145 (define (extend-variables env var* uvar*)
(cond
[(null? var*) env]
[(pair? var*) (extend-variables

(extend env (car var*) (car uvar*))
150 (cdr var*) (cdr uvar*))]

[else (extend env var* uvar*)]))

(define prim-list
’(+ - * / <= < = >= > fx+ fx- fx* fx/ fx <= fx< fx= fx>= fx> $fxu <

155 boolean? car cdr cons eq? integer? bignum? fixnum? symbol? make-vector
null? pair? fxzero? procedure? set-car! set-cdr!
vector? vector-length vector-ref vector-set!
void error display read memq for-all))

160 (define (Expr env safe)
(lambda (x)

(define Application
(lambda (env proc args) (App #f proc (map (Expr env safe) args))))

165 (match x
[,expr (guard (Trex? expr)) expr] ;; HACK
[,expr (guard (ident? expr)) (Ref #f expr)] ;; HACK
;; bound identifiers
[,id (guard (and (symbol? id) (ident? (lookup id env))))

170 (Ref #f (lookup id env))]
[(,id ,arg* ...) (guard (and (symbol? id)) (ident? (lookup id env)))
(Application env (Ref #f (lookup id env)) arg*)]

[,id (guard (and (symbol? id) (memq id prim-list)))
(Primref #f safe id)]

175
;; special forms
[,k (guard (constant? k)) (Quote #f k)]

[(quote ,datum)
180 (assert (datum? datum))

(Quote #f datum)]

127

B. Source Code

[(if ,[t] ,[c] ,[a])
(If #f t c a)]

185 [(if ,[t] ,[c])
(If #f t c (App #f (Primref #f #t ’void) (list)))]

[(not ,[x])
(If #f x (Quote #f #f) (Quote #f #t))]

190 [(and ,[x*] ...)
(if (null? x*)

(Quote #f #t)
(fold-left (lambda (a b) (If #f a b (Quote #f #f))) (car x*) (cdr x*)))]

[(or ,[x*] ...)
195 (if (null? x*)

(Quote #f #f)
(fold-left
(lambda (a b)

(let ([t (unique-var)])
200 (let ([t-ref (Ref #f t)])

(App
#f (CaseLambda

#f (list (CaseLambdaClause (list t) (If #f t-ref t-ref b))))
‘(,a)))))

205 (car x*) (cdr x*)))]

[(begin ,[x] ,[x*] ...)
(make-seq ‘(,x ,x* ...))]

210 [(lambda ,fml* ,x ,x* ...)
(verify-var-list fml*)
(let ([uvar* (improper-map wrap-var fml*)])

(let ([env (extend-variables env fml* uvar*)])
(CaseLambda

215 #f (list (CaseLambdaClause
uvar* (make-seq (map (Expr env safe) ‘(,x ,x* ...))))))))]

[(case-lambda [,fml** ,x* ,x** ...] ...)
(for-each (lambda (fml*) (verify-var-list fml*)) fml **)

220 (let ([uvar** (map (lambda (ls) (improper-map wrap-var ls)) fml**)])
(let ([env* (map (lambda (fml* uvar*) (extend-variables env fml* uvar*))

fml** uvar **)])
(let ([body* (map (lambda (x x* env)

(make-seq (map (Expr env safe) ‘(,x ,x* ...))))
225 x* x** env*)])

(CaseLambda #f (map CaseLambdaClause uvar** body*)))))]

[(let ([,lhs* ,[rhs*]] ...) ,x ,x* ...)
(verify-var-list lhs*)

230 (let ([uvar* (map wrap-var lhs*)])
(let ([env (extend-variables env lhs* uvar*)])

(App
#f (CaseLambda

#f (list (CaseLambdaClause
235 uvar* (make-seq (map (Expr env safe) ‘(,x ,x* ...))))))

rhs*)))]

[(letrec ([,lhs* ,rhs*] ...) ,x ,x* ...)
(verify-var-list lhs*)

240 (let ([uvar* (map wrap-var lhs*)])

128

B. Source Code

(let ([env (extend-variables env lhs* uvar*)])
(Letrec
#f uvar* (map (Expr env safe) rhs*)
(make-seq ‘(,((Expr env safe) x) ,(map (Expr env safe) x*) ...)))))]

245
[(set! ,id ,[rhs])
(guard (symbol? id))
(let ([uvar (lookup id env)])

(cond
250 [(ident? uvar) (ident-assigned-set! uvar #t) (Set #f uvar rhs)]

[else (App #f (Primref #f #f ’$set-top-level-value !)
(list (Quote #f uvar) rhs))]))]

[(apply ,[rator] ,[rand*] ... ,[(Expr env safe) -> rest])
255 (App #f (Primref #f #t ’apply) ‘(,rator ,rand* ... ,rest))]

;; application
[(,[x] ,arg* ...) (Application env x arg*)]

260 ;; free identifiers
[,id
(guard (symbol? id))
(begin

(display (list "WARNING:␣top-level-value" id))(newline)
265 (App #f (Primref #f #f ’$top-level-value) (list (Quote #f id))))]

[,x (assertion-violation who "invalid␣Expr" x)])))

(define parse-scheme (Expr empty-env #t))
270 (define parse-unsafe-scheme (Expr empty-env #f))

(define (unparse-scheme x)
(define (Ref->ident x)

(Trex-case x
275 [(Ref src id) id]

[else #f]))
(Trex-case x

[(Ref src id) (ident-name id)]
[(Quote src datum) ‘(quote ,datum)]

280 [(Seq src e1 e2) ‘(begin ,(unparse-scheme e1) ,(unparse-scheme e2))]
[(CaseLambda src cl*)
(let ([cl*

(map (lambda (cl)
(Trex-CaseLambdaClause-case

285 cl [(CaseLambdaClause fmls body)
‘(,(improper-map ident-name fmls) ,(unparse-scheme body))]))

cl*)])
(if (= (length cl*) 1)

‘(lambda ,(caar cl*) ,(cadar cl*))
290 ‘(case-lambda ,@cl*)))]

[(App src rator rand*)
‘(,(unparse-scheme rator) ,@(map unparse-scheme rand*))]

[(Letrec src var* expr* body)
‘(letrec ,(map (lambda (var expr)

295 ‘[,(ident-name var) ,(unparse-scheme expr)]) var* expr*)
,(unparse-scheme body))]

[(If src t c a)
‘(if ,(unparse-scheme t) ,(unparse-scheme c) ,(unparse-scheme a))]

[(Set src var expr) ‘(set! ,(ident-name var) ,(unparse-scheme expr))]

129

B. Source Code

300 [(Primref src safe name)
(if safe

name
(string->symbol (string-append "unsafe-" (symbol->string name))))]))

305)� �
Listing B.4: tests.ss� �

(library (tests)
(export run-tests)
(import (rnrs) (match) (driver-function)

(only (chezscheme) display-condition pretty-print))
5

(define (alpha-equiv? x y env)
(define (alpha-equiv-var? x y)

(let ([ypair (assq y env)])
(if ypair (eq? x (cdr ypair)) (eq? x y))))

10 (define (alpha-equiv-clause clx cly)
(match (list clx cly)

[(((,xx* ...) ,xb) ((,yx* ...) ,yb))
(let ([env (append (map cons yx* xx*) env)])

(alpha-equiv? xb yb env))]
15 [(((,xx* ,xr) ,xb) ((,yx* ,yr) ,yb))

(let ([env (cons (cons yr xr) (append (map cons yx* xx*) env))])
(alpha-equiv? xb yb env))]))

(match ‘(,x ,y)
[((lambda . ,clx) (lambda . ,cly)) (alpha-equiv-clause clx cly)]

20 [((case-lambda ,clx* ...) (case-lambda ,cly* ...))
(for-all alpha-equiv-clause clx* cly*)]

[((letrec ([,xx* ,xe*] ...) ,xb) (letrec ([,yx* ,ye*] ...) ,yb))
(let ([env (append (map cons yx* xx*) env)])

(and (for-all (lambda (x y) (alpha-equiv? x y env)) xe* ye*)
25 (alpha-equiv? xb yb env)))]

[((set! ,xx ,xv) (set! ,yx ,yv))
(and (alpha-equiv-var? xx yx) (alpha-equiv? xv yv env))]

[(,x ,y) (guard (and (symbol? x) (symbol? y))) (alpha-equiv-var? x y)]
[((begin ,xa ,xb) (begin ,ya ,yb))

30 (and (alpha-equiv? xa ya env) (alpha-equiv? xb yb env))]
[((quote ,x) (quote ,y)) (equal? x y)]
[((if ,xt ,xc ,xa) (if ,yt ,yc ,ya))
(and (alpha-equiv? xt yt env)

(alpha-equiv? xc yc env)
35 (alpha-equiv? xa ya env))]

[((prim-wrap ,xchanged? ,xprim ,xb) (prim-wrap ,ychanged? ,yprim ,yb))
(and (eq? xprim yprim) (alpha-equiv? xb yb env) (eq? xchanged? ychanged ?))]

[((, xrator ,xrand* ...) (,yrator ,yrand* ...))
(and (alpha-equiv? xrator yrator env)

40 (= (length xrand*) (length yrand*))
(for-all (lambda (x y) (alpha-equiv? x y env)) xrand* yrand *))]

[(,x ,y) #f]))

(define tests ’(
45 [1 . ’1]

[(cons 1 2) . (cons ’1 ’2)]
[(car (cons 1 2)) . (unsafe-car (cons ’1 ’2))]
[(lambda () 1) . (lambda () ’1)]

130

B. Source Code

[(lambda (x) x) . (lambda (x) x)]
50 [(lambda x x) . (lambda x x)]

[(lambda (x . y) x) . (lambda (x . y) x)]
[(lambda (x . y) y) . (lambda (x . y) y)]
[(let ([z (lambda (x) x)]) (let ([y (z (cons 1 2))]) (car y))) .
(letrec ([z (lambda (x) x)]) (letrec ([y (z (cons ’1 ’2))]) (unsafe-car y)))]

55 [(let ([z (lambda (f y) (f y))])
(let ([y (z (lambda (x) x) (cons 1 2))]) (car y))) .

(letrec ([z (lambda (f y) (f y))])
(letrec ([y (z (lambda (x) x) (cons ’1 ’2))]) (unsafe-car y)))]

[(cons #f (case-lambda
60 [(x y z) (cons x (cons y z))]

[(x . r) (cons r x)]
[q (car q) (cdr q)])) .

(cons ’#f (case-lambda
[(x y z) (cons x (cons y z))]

65 [(x . r) (cons r x)]
[q (car q)]))]

[(let ([x (cons 1 2)]) (car x)) . (letrec ([x (cons ’1 ’2)]) (unsafe-car x))]
[(let ([x (cons 1 2)]) (car x) (car x)) .
(letrec ([x (cons ’1 ’2)]) (begin (unsafe-car x) (unsafe-car x)))]

70 [(let ([x (cons 1 2)]) (car x) (vector-length x)) .
(letrec ([x (cons ’1 ’2)]) (begin (unsafe-car x) (vector-length x)))]

[(let ([x (read)]) (car x) (car x)) .
(letrec ([x (read)]) (begin (car x) (unsafe-car x)))]

[(if (error ’who "message") 1 2) . (error ’who ’"message")]
75 [(if #t 1 2) . (begin ’#t ’1)] ;; test unreachable empty environments

[(let ((f (lambda (x) (if (fxzero? x) 1 2)))) (f 0) (f 3)) .
(letrec ([f (lambda (x) (if (fxzero? x) ’1 ’2))]) (begin (f ’0) (f ’3)))]

;;; Olin Shiver ’s puzzle test (page 140 (in pdf - 118) of his thesis):
[(let ([f (lambda (x h) (if (fxzero? x) (h) (lambda () x)))]) (f 0 (f 3 #f))) .

80 (letrec ([f (lambda (x h) (if (fxzero? x) (h) (lambda () x)))])
(f ’0 (f ’3 ’#f)))]

[(letrec ([x (cons 1 2)] [f (lambda () (car x))]) (f)) .
(letrec ([x (cons ’1 ’2)] [f (lambda () (unsafe-car x))]) (f))]

;; Test that bare var refs properly effect the environment
85 [(let ([x (if (read) (cons 1 2) ’#f)]) (if x (car x) 3)) .

(letrec ([x (if (read) (cons ’1 ’2) ’#f)]) (if x (unsafe-car x) ’3))]
[(let ([x (read)]) (let ([a (car x)]) (car x))) .
(letrec ([x (read)]) (letrec ([a (car x)]) (unsafe-car x)))]

[(let ([x (read)]) (if (if (pair? x) #f #t) (car x) (car x))) .
90 (letrec ([x (read)]) (if (if (pair? x) ’#f ’#t) (car x) (unsafe-car x)))]

[(letrec ([a (car (cons 1 2))]) 1) . (letrec ([a (unsafe-car (cons ’1 ’2))]) ’1)]
[(letrec ((x (cons 1 2))) (car x)) . (letrec ([x (cons ’1 ’2)]) (unsafe-car x))]
[(let ([x (cons 1 2)]) (letrec ([a (car x)][b (car x)]) 1)) .
(letrec ([x (cons ’1 ’2)]) (letrec ([a (unsafe-car x)][b (unsafe-car x)]) ’1))]

95 ;; the cons call to f never happens
[(let ([f (lambda (x) (car x) 1)]) (f (make-vector 3)) (f (cons 1 2))) .
(letrec ([f (lambda (x) (car x))]) (f (unsafe-make-vector ’3)))]

;; same as last test but both calls are made because of different order
[(let ([f (lambda (x) (car x) 1)]) (f (cons 1 2)) (f (make-vector 3)) 4) .

100 (letrec ([f (lambda (x) (begin (car x) ’1))])
(begin (f (cons ’1 ’2)) (f (unsafe-make-vector ’3))))]

[(car (read)) . (car (read))]
[(cons 1 2) . (cons ’1 ’2)]
[(read) . (read)]

105 [(letrec ([a (car b)][b (car a)]) 3) .
(letrec ([a (unsafe-car b)][b (unsafe-car a)]) ’3)]

[(letrec ([a (lambda () (car b))][b (lambda () (car a))]) 3) .

131

B. Source Code

(letrec ([a (case-lambda)] [b (case-lambda)]) ’3)]
[(letrec ([a (cons 1 2)] [b (car a)]) 3) .

110 (letrec ([a (cons ’1 ’2)][b (unsafe-car a)]) ’3)]
[(let ([a (lambda () (car (read)))]) 1) .
(letrec ([a (case-lambda)]) ’1)]

[(begin (error ’who "message") #t) . (error ’who ’"message")]
;; tests that info is gathered from both args of letrec

115 [(let ([x (read)]) (letrec ([a (car x)][b (vector-length x)]) 4 5)) .
(letrec ([x (read)]) (letrec ([a (car x)][b (vector-length x)]) ’4))]

[(let ([x (lambda () 1 2)]) 3) . (letrec ([x (case-lambda)]) ’3)]
[(let ([x (read)]) (if x x (error ’who "message")) (if x 1 2)) .
(letrec ([x (read)]) (begin (if x x (error ’who ’"message")) (begin x ’1)))]

120 [(let ([x (cons 1 2)]) (car x) (set! x 5) (car x)) .
(letrec ([x (cons ’1 ’2)]) (begin (begin (car x) (set! x ’5)) (car x)))]

[(let ([x (cons 1 2)]) (car x) (set! x (cons 3 4)) (car x)) .
(letrec ([x (cons ’1 ’2)])

(begin (begin (unsafe-car x) (set! x (cons ’3 ’4))) (unsafe-car x)))]
125 [(let ([f (lambda (x) (set! x (cons 1 2)) x)]) (car (f (cons 4 5)))) .

(letrec ([f (lambda (x) (begin (set! x (cons ’1 ’2)) x))])
(unsafe-car (f (cons ’4 ’5))))]

;; The following works , should reach the 5, since (cons - -) is true
[(let ([f (lambda (x y) (cons (car x) (fx+ y 1)))] [x (read)] [y (read)])

130 (if (f x y) 5 7)) .
(letrec ([f (lambda (x y) (cons (car x) (fx+ y ’1)))] [x (read)] [y (read)])

(begin (f x y) ’5))]
[(let ([x (read)] [f (lambda (a b) (cdr a))]) (car x) (f x (car x))) .
(letrec ([x (read)] [f (lambda (a b) (unsafe-cdr a))])

135 (begin (car x) (f x (unsafe-car x))))]
[(let ([x (read)][f (lambda (a b) (cdr a))]) (f (begin (car x) x) (car x))) .
(letrec ([x (read)] [f (lambda (a b) (unsafe-cdr a))])

(f (begin (car x) x) (car x)))]
[(let ([x (read)]) (if #t (car x) 1) (car x)) .

140 (letrec ([x (read)]) (begin (begin ’#t (car x)) (unsafe-car x)))]
[(letrec ([x 1]) (set! x (cons 1 2)) (car x)) .
(letrec ([x ’1]) (begin (set! x (cons ’1 ’2)) (car x)))]

;; check that escaping lambdas work right
[(if (read) (lambda (x) (car x)) (lambda (y) (cdr y))) .

145 (if (read) (lambda (x) (car x)) (lambda (y) (cdr y)))]
;; should mark-escaped-lambda
[(cons 1 (lambda (x) (cdr x))) . (cons ’1 (lambda (x) (cdr x)))]
;; should not mark-escaped-lambda
[(null? (lambda (x) (cdr x))) . (null? (case-lambda))]

150 ;; test that car never happens due to type error in cons call
[(car (cons 1)) . (unsafe-car (cons ’1))]
;; test that low gas works ok
[(let ([x (read)]) (if (not (not (pair? x))) (car x))) .
(letrec ([x (read)])

155 (if (if (if (pair? x) ’#f ’#t) ’#f ’#t) (unsafe-car x) (void)))]
[(lambda () (void) 3) . (lambda () (begin (void) ’3))]
[(letrec ([fac (lambda (x) (if (fxzero? x) 1 (fx* x (fac 0))))]) (fac (read))) .
(letrec ([fac (lambda (x) (if (fxzero? x) ’1 (unsafe-fx* x (fac ’0))))])

(fac (read)))]
160 ;; test incorrect argument count calls

[((lambda (x) 1 2) 3 4) . ((case-lambda) ’3 ’4)]
;; too many arguments and we have a last rest (should call body)
[((case-lambda [(x . y) 3 4]) 5 6 7) . ((lambda (x . y) (begin ’3 ’4)) ’5 ’6 ’7)]
;; too many argument and no last-rest

165 [((case-lambda [(x y) 3 4]) 5 6 7) . ((case-lambda) ’5 ’6 ’7)]
;; small number of arguments and exact call but no clause handles it

132

B. Source Code

[((case-lambda [(x y z w) 3 4]) 5 6 7) . ((case-lambda) ’5 ’6 ’7)]
;; small number of argument and exact call and a clause handles it
[((case-lambda [(x y z w) 3 4]) 5 6 7 8) .

170 (letrec ([x ’5][y ’6][z ’7][w ’8]) (begin ’3 ’4))]
[((lambda (x . y) 3) 1 2) . ((lambda (x . y) ’3) ’1 ’2)]
))

(define (run-tests)
175 (let ([len (length tests)])

(let f ([tests tests] [failed ’()])
(cond
[(null? tests)
(if (null? failed)

180 (begin
(display "\nran␣")
(display len)
(display "␣tests ,␣all␣succeeded\n"))

(begin
185 (display "\nran␣")

(display len)
(display "␣tests ,␣")
(display (length failed))
(display "␣failed\n")

190 (display "Failing␣tests :\n")
(for-each pretty-print (reverse failed))))]

[else
(let ([fail (lambda ()

(display "\nfailed:␣")
195 (display (caar tests))

(newline)
(f (cdr tests) (cons (caar tests) failed)))])

(guard
(condition [#t (newline) (display-condition condition) (fail)])

200 (let ([result (run (caar tests))])
(cond
[(alpha-equiv? (cdar tests) result ’())
(display ".")
(f (cdr tests) failed)]

205 [else (fail)]))))]))))

)� �
B.2.1. Preprocessing

Listing B.5: transform-let.ss� �
(library (transform-let)

(export transform-let)
(import (rnrs) (tprogram))

5 ;; Trex -> Trex
(define (transform-let trex)

(define rec transform-let)

133

B. Source Code

(or (Trex-case trex
10 [(App src-app fun actuals)

(Trex-case fun
[(CaseLambda src-lambda clauses)
(cond
[(= 1 (length clauses))

15 (Trex-CaseLambdaClause-case (car clauses)
[(CaseLambdaClause formals body)
(cond
[(and (list? formals) (= (length formals) (length actuals)))
(Letrec src-app formals (map rec actuals) (rec body))]

20 [else #f])]
[else #f])]

[else #f])]
[else #f])]

[else #f])
25

(Trex-case trex
[(Ref src id) trex]
[(Quote src obj) trex]
[(Primref src safe name) trex]

30 [(Set src id body) (Set src id (rec body))]
[(App src fun actuals) (App src (rec fun) (map rec actuals))]
[(If src test thn els) (If src (rec test) (rec thn) (rec els))]
[(CaseLambda src clauses)
(let ([f (lambda (clause)

35 (Trex-CaseLambdaClause-case clause
[(CaseLambdaClause formals body)
(CaseLambdaClause formals (rec body))]))])

(CaseLambda src (map f clauses)))]
[(Seq src e1 e2) (Seq src (rec e1) (rec e2))]

40 [(Letrec src lhs rhs body) (Letrec src lhs (map rec rhs) (rec body))])))

)� �
Listing B.6: ast-bubbles.ss� �

(library (ast-bubbles)
(export make-AST-bubbles AST-bubbles-intersect)
(import (except (rnrs) case cond if) (safe-forms) (myers-stacks)

(tree-locations) (ast) (idents))
5

;; KEY TRICK : the bubble algorithm creates the bubble lists in order
;; sorted by their ident-number
(define (AST-bubbles-intersect set1 set2)

(define < ident> ?)
10 (define rec AST-bubbles-intersect)

(cond
[(or (null? set1) (null? set2)) ’()]
[(< (car set1) (car set2)) (rec (cdr set1) set2)]
[(< (car set2) (car set1)) (rec set1 (cdr set2))]

15 [else (cons (car set1) (rec (cdr set1) (cdr set2)))]))

(define (make-AST-bubbles ast)
(define tree-location-table

(make-tree-location-table
20 ast

134

B. Source Code

AST-tree-start-location-set! AST-tree-end-location-set!
ident-asts ident-asts-set!
ident-locations ident-locations-set!
contains mark add

25 (lambda (ast)
(AST-case ast

[(Ref ident) (mark ast ident)]
[(Quote obj) (values)]
[(Primref safe name) (values)]

30 ;; TODO : how to mark non-leaf (for now not needed b/c mutable vars)
[(Set ident expr) (contains expr)]
[(App fun args) (contains fun) (vector-for-each contains args)]
[(If test conseq altern)
(contains test) (contains conseq) (contains altern)]

35 [(CaseLambda table clauses)
(letrec ([do-clause

(lambda (clause)
(for-each add (case-lambda-clause-formals&rest clause))
(contains (case-lambda-clause-body clause)))])

40 (vector-for-each do-clause clauses))]
[(Seq e1 e2) (contains e1) (contains e2)]
[(Letrec bindings body)
(vector-for-each add (vector-map letrec-binding-lhs bindings))
(vector-for-each contains (vector-map letrec-binding-rhs bindings))

45 (contains body)])
(values))))

(define (AST-bubble-vars-add! ast ident)
(AST-bubble-vars-set! ast (cons ident (AST-bubble-vars ast))))

50
(define (AST-bubble-vars-contains? ast ident)

(let ([bubbles (AST-bubble-vars ast)])
(and (not (null? bubbles)) (ident=? ident (car bubbles)))))

55 (define (bubble-base tpt ast ident)
(define context (AST-context ast))
(define locations (ident-locations ident))
(define asts (ident-asts ident))
(define prev-ref

60 (tree-location-table-prev-ref
tpt ast ident #f (AST-tree-start-location ast) locations asts))

(define prev-base
(myers-stack-eq-suffix
context (if prev-ref (AST-context prev-ref) myers-stack-null)))

65 (define next-ref
(tree-location-table-next-ref
tpt ast ident #f (AST-tree-end-location ast) locations asts))

(define next-base
(myers-stack-eq-suffix

70 context (if next-ref (AST-context next-ref) myers-stack-null)))

(if (> (myers-stack-length prev-base) (myers-stack-length next-base))
prev-base
next-base))

75
;; inflate - move up context and stop just before would
;; include extra ref to ident
(define (inflate queue ast ident)

(let ([base (bubble-base tree-location-table ast ident)]) ;; length >= 0

135

B. Source Code

80 ;; TODO : if not found (then add nothing)
;; (instead of or in additon to "if stack-null-base ")
(if (myers-stack-null? base)

queue
(let* ([context (AST-context ast)] ;; length >= 1

85 [root (myers-stack-car (myers-stack-previous context base))])
(if (AST-bubble-vars-contains? root ident)

queue
(begin

;; mark root
90 (AST-bubble-vars-add! root ident)

;; add parent of root to queue
(cons (myers-stack-car base) queue)))))))

;; Give the variables a number so we can keep them sorted
95 (let loop ([counter 0]

[idents (tree-location-table-key-list tree-location-table)])
(unless (null? idents)

(ident-number-set! (car idents) counter)
(loop (+ 1 counter) (cdr idents))))

100
;; NOTE : each ident is separate passes so AST-bubble-vars-add !
;; keeps the list uniqified
(for-each
(lambda (ident)

105 (when (not (ident-assigned ident))
;; put all occurances in the work queue
(let loop ([queue (vector->list (ident-asts ident))])

(unless (null? queue) ;; loop until queue empty
(loop (inflate (cdr queue) (car queue) ident))))))

110 ;; order is critical to get the sets ordered
(tree-location-table-key-list tree-location-table)))

)� �
Listing B.7: tree-locations.ss� �

(library (tree-locations)
(export
make-tree-location-table
tree-location-table-key-list

5 tree-location-table-prev-ref
tree-location-table-next-ref)

(import (rnrs))

(define-record-type
10 (tree-location-table $make-tree-location-table tree-location-table ?)

(nongenerative)
(fields
key-locations ;; key -> vector [node]
key-nodes ;; key -> vector [node]

15 key-list ;; list [key]
))

;; walker must call (for-each contains children) and (mark key)

20 ;; tree-location ::

136

B. Source Code

;; obj * (contains * mark * obj -> void) -> tree-location-table
;; mark :: key -> void
;; contains :: obj -> void

25 (define-syntax make-tree-location-table
(syntax-rules ()

[(_ tree ;; node
node-start-location-set! ;; node * int -> void
node-end-location-set! ;; node * int -> void

30 key-nodes ;; key -> list or vector of node
key-nodes-set! ;; key * list or vector of node -> void
key-locations ;; key -> list or vector of int
key-locations-set! ;; key * list or vector of int -> void
contains mark add

35 walker-fun)

(let ([counter 0]
[key-list ’()])

(letrec ([walker walker-fun]
40 [contains (lambda (node)

(node-start-location-set! node counter)
(set! counter (+ 1 counter))
(walker node)
(set! counter (+ 1 counter))

45 (node-end-location-set! node counter))]
[mark
(lambda (node key)

(key-nodes-set! key (cons node (key-nodes key)))
(key-locations-set! key (cons counter (key-locations key))))]

50 [add (lambda (key) (set! key-list (cons key key-list)))])

;; walk the tree
(contains tree)

55 ;; Reverse and convert to vectors so we can vector-binary-search
(for-each
(lambda (key)

(key-nodes-set! key (list->vector (reverse (key-nodes key))))
(key-locations-set! key (list->vector (reverse (key-locations key)))))

60 key-list)

($make-tree-location-table key-locations key-nodes key-list)))]))

(define (key-locations <=? ref key) (<= ref key))
65

;; returns index of first greater or equal
(define vector-binary-search

(case-lambda
[(vector key) (vector-binary-search vector key 0 (vector-length vector))]

70 [(vector key start len)
(define rec vector-binary-search)
(let* ([len1 (div len 2)]

[mid (+ start len1)]
[len2 (- len len1 1)])

75 (cond
[(= len 0) start]
[(key-locations <=? key (vector-ref vector mid)) (rec vector key start len1)]
[else (rec vector key (+ mid 1) len2)]))]))

137

B. Source Code

80 (define (tree-location-table-prev-ref tpt node key default start-location
key-locations key-nodes)

(define index (vector-binary-search key-locations start-location))
(if (= index 0)

default
85 (vector-ref key-nodes (- index 1))))

(define (tree-location-table-next-ref tpt node key default end-location
key-locations key-nodes)

(define index (vector-binary-search key-locations end-location))
90 (if (= index (vector-length key-locations))

default
(vector-ref key-nodes index)))

)� �
Listing B.8: myers-stacks.ss� �

(library (myers-stacks)

;; PROPERTIES :
;; All operations are O(lg n) or better

5 ;; (except list->myers-stack and myers-stack->list).
;;
;; All operations are observationally equivalent to the corresponding
;; list operations . This includes pointer equality and mutation .

10 ;; NOTATION :
;; obj - any scheme object
;; stack - myers-stack object
;; stack-pair - myers-stack object that is not null
;; elem - object contained in the myers-stack

15 ;; list - list of elem objects
;; length - non-negative integer less then or equal to length
;; index - non-negative integer strictly less than length

(export
20 myers-stack

myers-stack? ;; obj -> boolean

myers-stack-null ;; stack
myers-stack-null? ;; obj -> boolean

25
myers-stack-cons ;; elem * stack -> stack
myers-stack-pair? ;; obj -> boolean
myers-stack-car ;; stack-pair -> elem
myers-stack-car-set! ;; stack-pair * elem -> void

30 myers-stack-cdr ;; stack-pair -> stack

myers-stack-length ;; stack -> length
myers-stack-ref ;; stack * index -> elem
list->myers-stack ;; list -> stack

35 myers-stack->list ;; stack -> list

myers-stack-find ;; (stack ... -> bool) * stack ... -> stack
;; returns first that is true
;; stacks must be same length

138

B. Source Code

40 myers-stack-suffix ;; stack * length -> stack
myers-stack-drop ;; stack * length -> stack

myers-stack-previous ;; stack * stack -> stack (second is suffix)
myers-stack-previous-ref ;; stack * stack -> elem (second is suffix)

45 myers-stack-eq-suffix ;; stack * stack -> stack
;; returns first that is ’eq?’
;; stacks need not be same length

)

50 (import (except (rnrs) case cond if) (safe-forms) (records-io))

;; TODO :
;; - use fx or not ?
;; - fold-right in O(lg n)

55 ;; - myers-stack-find is only valid if args are same length
;; (maybe call it find-from-rear and trim arguments to same length)

;; ;;;;;;;;;;;;;;
;; Datatype

60 ;; ;;;;;;;;;;;;;;

;; Defines the following exported functions :
;; myers-stack ?
;; myers-stack-car

65 ;; myers-stack-car-set !
;; myers-stack-cdr
;; myers-stack-length
(define-record-type myers-stack

(nongenerative)
70 (fields (mutable $car) length $cdr jump))

(define myers-stack-car-set! myers-stack-$car-set !)

(define (myers-stack-car stack)
75 (assert (< 0 (myers-stack-length stack)))

(myers-stack-$car stack))

(define (myers-stack-cdr stack)
(assert (< 0(myers-stack-length stack)))

80 (myers-stack-$cdr stack))

;; ;;;;;;;;;;;;;;
;; Basic Ops
;; ;;;;;;;;;;;;;;

85 (define myers-stack-null
(let* ([jump-jump (make-myers-stack #f -1 #f #f)]

[jump (make-myers-stack #f 0 #f jump-jump)])
(make-myers-stack #f 0 #f jump)))

90 (define (myers-stack-null? stack)
(and (myers-stack? stack) (fxzero? (myers-stack-length stack))))

(define (myers-stack-cons car cdr)
(let* ([jump (myers-stack-jump cdr)]

95 [jump-jump (myers-stack-jump jump)])
(let ([cdr-length (myers-stack-length cdr)]

[jump-length (myers-stack-length jump)]
[jump-jump-length (myers-stack-length jump-jump)])

139

B. Source Code

(let ([length (fx+ 1 cdr-length)])
100 (if (eq? (fx- cdr-length jump-length)

(fx- jump-length jump-jump-length))
(make-myers-stack car length cdr jump-jump)
(make-myers-stack car length cdr cdr))))))

105 (define (myers-stack-pair? stack)
(and (myers-stack? stack) (not (fxzero? (myers-stack-length stack)))))

(define (list->myers-stack list)
(fold-right myers-stack-cons myers-stack-null list))

110
(define (myers-stack->list stack)

(cond
[(myers-stack-null? stack) ’()]
[(myers-stack-pair? stack)

115 (cons (myers-stack-car stack)
(myers-stack->list (myers-stack-cdr stack)))]))

(define (myers-stack-ref stack index)
($check-index ’myers-stack-ref stack index)

120 (myers-stack-car (myers-stack-drop stack (- index 1))))

;; ;;;;;;;;;;;;;;
;; Basic Finds
;; ;;;;;;;;;;;;;;

125
(define ($check-range who stack index assertion)

(unless assertion
(assertion-violation who "out␣of␣range" index stack)))

(define ($check-index who stack index)
130 ($check-range who stack index (< index (myers-stack-length stack))))

(define ($check-length who stack length)
($check-range who stack length (<= length (myers-stack-length stack))))

;; TODO : what to do if nothing matches the find ?
135 ;; TODO : rename to find-first

;; TODO : returns #f if nothing matches
(define (myers-stack-find f . args)

(cond
[(apply f args) (apply values args)]

140 [(myers-stack-null? (car args)) #f]
[else
(let ([jumps (map myers-stack-jump args)])

(cond
;; jump is too far

145 [(apply f jumps)
(apply myers-stack-find f (map myers-stack-cdr args))]

;; jump isn ’t too far
[else (apply myers-stack-find f jumps)]))]))

150 (define-syntax myers-stack-find-macro
(lambda (stx)

(syntax-case stx ()
[(_ fun x0 xs ...)
(with-syntax ([(arg0 args ...) (generate-temporaries #’(x0 xs ...))]

155 [(jump0 jumps ...) (generate-temporaries #’(x0 xs ...))])
#’(let loop ([f fun][arg0 x0][args xs] ...)

(cond

140

B. Source Code

[(f arg0 args ...) (values arg0 args ...)]
[(myers-stack-null? arg0) #f]

160 [else
(let ([jump0 (myers-stack-jump arg0)]

[jumps (myers-stack-jump args)] ...)
(cond

[(f jump0 jumps ...) (loop f (myers-stack-cdr arg0) (
myers-stack-cdr args) ...)]

165 [else (loop f jump0 jumps ...)]))])))])))

(define (myers-stack-suffix stack length)
($check-length ’myers-stack-suffix stack length)
(myers-stack-find-macro

170 (lambda (stack) (<= (myers-stack-length stack) length)) stack))

(define (myers-stack-drop stack length)
($check-length ’myers-stack-drop stack length)
(myers-stack-suffix stack (- (myers-stack-length stack) length)))

175
;; ;;;;;;;;;;;;;;
;; Fancy Finds
;; ;;;;;;;;;;;;;;

180 (define (myers-stack-previous stack suffix)
(myers-stack-suffix stack (+ (myers-stack-length suffix) 1)))

(define (myers-stack-previous-ref stack suffix)
(and (< (myers-stack-length stack) (myers-stack-length suffix))

185 (myers-stack-car (myers-stack-previous stack suffix))))

(define (myers-stack-eq-suffix arg0 arg1)
(let ([length (min (myers-stack-length arg0)

(myers-stack-length arg1))])
190 (let-values ([(common0 common1)

(myers-stack-find-macro
eq?
(myers-stack-suffix arg0 length)
(myers-stack-suffix arg1 length))])

195 common0)))

;; ;;;;;;;;;;;;;;
;; Display
;; ;;;;;;;;;;;;;;

200 (record-writer
(record-type-descriptor myers-stack)
(lambda (r p wr)

(display "#[" p)
(display (record-type-name (record-rtd r)) p)

205 (display "␣" p)
(wr (myers-stack->list r) p)
(display "]" p)))

)� �
Listing B.9: composition-stacks.ss� �

(library (composition-stacks)

141

B. Source Code

;; PROPERTIES :
;; All operations are O(lg n) or better

5 ;; (except list->composition-stack and composition-stack->list).
;;
;; All operations are observationally equivalent to the corresponding
;; list operations . This includes pointer equality and mutation .

10 ;; NOTATION :
;; obj - any scheme object
;; stack - myers-stack object
;; stack-pair - myers-stack object that is not null
;; elem - object contained in the myers-stack

15 ;; list - list of elem objects
;; length - non-negative integer less then or equal to length
;; index - non-negative integer strictly less than length

(export
20 composition-stack? ;; obj -> boolean

make-composition-stack-null ;; (elem * elem -> elem) -> stack -- associative
composition-stack-null? ;; obj -> boolean

25 composition-stack-cons ;; elem * stack -> stack
composition-stack-pair? ;; obj -> boolean
composition-stack-car ;; stack-pair -> obj
;; composition-stack-car-set ! ;; stack-pair * obj -> void
composition-stack-cdr ;; stack-pair -> stack

30
composition-stack-length ;; stack -> length
composition-stack-ref ;; stack * index -> elem
;; composition-stack-set ! ;; stack * index * elem -> void
list->composition-stack ;; list -> stack

35 composition-stack->list ;; stack -> list

composition-stack-find ;; (stack ... -> bool) * stack ... -> stack
;; returns first that is true
;; stacks must be same length

40 composition-stack-suffix ;; stack * length -> stack
composition-stack-drop ;; stack * length -> stack

composition-stack-previous ;; stack * stack -> stack (second is suffix)
composition-stack-previous-ref ;; stack * stack -> elem (second is suffix)

45 composition-stack-eq-suffix ;; stack * stack -> stack
;; returns first that is ’eq?’
;; need not be same length

composition-stack-range ;; elem * stack * stack -> elem
)

50
(import (rnrs)

(rename
(myers-stacks)
(myers-stack-null? composition-stack-null ?)

55 (myers-stack-pair? composition-stack-pair ?)
(myers-stack-car composition-stack-car)
;; myers-stack-car-set ! is not exported (b/c it breaks the compositions)
(myers-stack-cdr composition-stack-cdr)
(myers-stack-length composition-stack-length)

60 (myers-stack-ref composition-stack-ref)

142

B. Source Code

(myers-stack->list composition-stack->list)
(myers-stack-find composition-stack-find)
(myers-stack-suffix composition-stack-suffix)
(myers-stack-drop composition-stack-drop)

65 (myers-stack-previous composition-stack-previous)
(myers-stack-previous-ref composition-stack-previous-ref)
(myers-stack-eq-suffix composition-stack-eq-suffix)))

;; TODO :
70 ;; - make car non-mutable

;; - calculate constant for composition-stack-jump

;; ;;;;;;;;;;;;;;
;; Datatype

75 ;; ;;;;;;;;;;;;;;

(define-record-type composition-stack
(nongenerative)
(fields composer composite)

80 (parent myers-stack))

(define composition-stack-jump
(let ([rtd (record-type-descriptor myers-stack)]

[index 3])
85 (assert (eq? ’jump (vector-ref (record-type-field-names rtd) index)))

(record-accessor rtd index)))

;; ;;;;;;;;;;;;;;
;; Operations

90 ;; ;;;;;;;;;;;;;;
(define (make-composition-stack-null composer)

(let* ([jump-jump (make-composition-stack #f -1 #f #f #f #f)]
[jump (make-composition-stack #f 0 #f jump-jump #f #f)])

(make-composition-stack #f 0 #f jump composer #f)))
95

(define (composition-stack-cons car cdr)
(let* ([jump (composition-stack-jump cdr)]

[jump-jump (composition-stack-jump jump)])
(let ([cdr-length (composition-stack-length cdr)]

100 [jump-length (composition-stack-length jump)]
[jump-jump-length (composition-stack-length jump-jump)])

(let ([length (fx+ 1 cdr-length)]
[composer (composition-stack-composer cdr)])

(if (eq? (fx- cdr-length jump-length)
105 (fx- jump-length jump-jump-length))

(make-composition-stack
car length cdr jump-jump composer
(composer car (composer (composition-stack-composite cdr)

(composition-stack-composite jump))))
110 (make-composition-stack

car length cdr cdr composer car))))))

(define (list->composition-stack compose list)
(fold-right

115 composition-stack-cons (make-composition-stack-null compose) list))

(define (composition-stack-range identity stack suffix)
(define (rec identity composer stack length)

(if (fx=? length (composition-stack-length stack))

143

B. Source Code

120 identity
(let ([jump (composition-stack-jump stack)])

(if (fx>? length (composition-stack-length jump))
(composer
(composition-stack-car stack)

125 (rec identity composer (composition-stack-cdr stack) length))
(composer
(composition-stack-composite stack)
(rec identity composer jump length))))))

(rec identity (composition-stack-composer stack)
130 stack (composition-stack-length suffix)))

)� �
B.2.2. Graph construction

Listing B.10: env-flow-graphs.ss� �
(library (env-flow-graphs)

(export
make-env-flow-graph ;; ast -> void
env-flow-graph-force! ;; ast -> void

5)
(import (except (rnrs) case cond if) (safe-forms) (composition-stacks)

(env-flow-functions) (ast) (ast-flow-graphs) (types) (flow-graphs))

;; ;;;;;;;;;;;;;;
10 ;; defines transfer function from output of child to output of this

;; thus does one recur per child

(define (make-env-flow-graph ast)
;; context :: composition-stack of flow-graph-node of env-flow-function

15 (define (rec ast context)

(define-syntax define-rec
(syntax-rules ()

[(_ (name args ...)
20 ([true-test true-conseq] ...)

([false-test false-conseq] ...))
(define (name ast context expr args ...)

(define node
(make-AST-node ast make-flow-graph-lazy-node (symbol->string ’name)

25 env-flow-function =? env-flow-function-zero))
(AST-graph-context-thunk-set!
expr (lambda ()

(flow-graph-lazy-node-force!
node

30 (lambda (args ...)
(cond-env-flow-function
([true-test true-conseq] ...)
([false-test false-conseq] ...)))

(AST-output-node args) ...)))
35 (rec expr (composition-stack-cons node context)))]))

144

B. Source Code

(define-rec (rec-id)
([#t true])
([#t false]))

40
(define-rec (rec-bypass)

([#t bypass])
([#t bypass]))

45 (define-rec (rec-void ast)
([(true-type? ast) true] [(true-type? ast) false])
([(false-type? ast) true] [(false-type? ast) false]))

(define-rec (rec-if-test conseq altern)
50 ([(true-type? conseq) true] [(true-type? altern) false])

([(false-type? conseq) true] [(false-type? altern) false]))

(define-rec (rec-if-branch this that)
([#t true] [(true-type? that) bypass])

55 ([#t false] [(false-type? that) bypass]))

(AST-graph-context-set! ast context)

(AST-case ast
60 [(Ref var) (values)]

[(Quote obj) (values)]
[(Primref safe name) (values)]
[(Set var expr) (rec-void ast context expr ast)]

65 [(App fun actuals)
(rec-void ast context fun ast)
(vector-for-each (lambda (actual) (rec-void ast context actual ast))

actuals)]

70 [(If test conseq altern)
(rec-if-test ast context test conseq altern)
(rec-if-branch ast context conseq conseq altern)
(rec-if-branch ast context altern altern conseq)]

75 [(CaseLambda table clauses)
(vector-for-each
(lambda (clause)

;; NOTE : context here is only used for in not out
(rec-bypass ast context (case-lambda-clause-body clause)))

80 clauses)]

[(Seq expr1 expr2)
(rec-void ast context expr1 ast)
(rec-id ast context expr2)]

85
[(Letrec bindings body)
(vector-for-each
(lambda (binding) (rec-void ast context (letrec-binding-rhs binding) ast))
bindings)

90 (rec-id ast context body)]))

(rec ast (make-composition-stack-null
(lambda (inner outer)

(make-AST-node ast make-flow-graph-function-node
95 "env-flow-function-compose"

145

B. Source Code

env-flow-function =?
env-flow-function-compose outer inner)))))

(define (env-flow-graph-force! ast)
100 (define (rec ast) (env-flow-graph-force! ast))

(let ([thunk (AST-graph-context-thunk ast)])
(when thunk

(thunk)
(AST-graph-context-thunk-set! ast #f)))

105
(AST-case ast

[(Ref var) (values)]
[(Quote obj) (values)]
[(Primref safe name) (values)]

110 [(Set var expr) (rec expr)]
[(App fun actuals)
(rec fun)
(vector-for-each rec actuals)]

[(If test conseq altern)
115 (rec test)

(rec conseq)
(rec altern)]

[(CaseLambda table clauses)
(vector-for-each (lambda (clause) (rec (case-lambda-clause-body clause)))

120 clauses)]
[(Seq expr1 expr2)
(rec expr1)
(rec expr2)]

[(Letrec bindings body)
125 (vector-for-each (lambda (binding) (rec (letrec-binding-rhs binding)))

bindings)
(rec body)]))

)� �
Listing B.11: value-flow-graphs.ss� �

(library (value-flow-graphs)
(export make-value-flow-graph clause-info-in-called)
(import (except (rnrs) case cond if) (safe-forms) (define-ignored) (ast)

(ast-flow-graphs) (flow-graphs) (types) (bitypes) (idents)
5 (composition-stacks) (env-flow-functions) (prims) (iota) (ast-bubbles))

(define make-AST-for-all-node
(case-lambda
[(ast name fun base nodes1 nodes2)

10 (cond
[(null? nodes1) base]
[else
(make-AST-for-all-node
ast name fun (make-AST-node ast make-flow-graph-function-node name boolean =?

15 fun base (car nodes1) (car nodes2))
(cdr nodes1) (cdr nodes2))])]

[(ast name fun base nodes)
(cond

20 [(null? nodes) base]

146

B. Source Code

[else
(make-AST-for-all-node
ast name fun (make-AST-node ast make-flow-graph-function-node name boolean =?

fun base (car nodes))
25 (cdr nodes))])]))

(define make-AST-for-all-non-bot-node
(case-lambda
[(ast name nodes)

30 (cond
[(null? nodes) (make-AST-const-node ast name #t)]
[else (make-AST-for-all-non-bot-node

ast name (make-AST-node ast make-flow-graph-function-node name boolean =?
non-bot-type? (car nodes))

35 (cdr nodes))])]
[(ast name base nodes)
(cond
[(null? nodes) base]
[else

40 (make-AST-for-all-non-bot-node
ast name (make-AST-node

ast make-flow-graph-function-node name boolean =?
(lambda (base node) (and base (non-bot-type? node)))
base (car nodes))

45 (cdr nodes))])]))

(define (make-AST-const-node ast name const)
(make-AST-node ast make-flow-graph-mutable-node name eq? const))

(define (make-AST-type-guard-node ast name guard node)
50 (make-AST-node ast make-flow-graph-function-node name type =?

(lambda (guard val) (if guard val bot-type)) guard node))
(define (make-AST-const-type-guard-node ast name guard const)

(make-AST-node ast make-flow-graph-function-node name type =?
(lambda (test) (if test const bot-type)) guard))

55
(define (make-AST-bitype-id-node ast name node)

(make-AST-node ast make-flow-graph-function-node name bitype =?
(lambda (x) x) node))

(define (AST->type-id-node ast name expr)
60 (AST-output-node expr))

(define (make-AST-enable-node ast name)
(make-AST-node ast make-flow-graph-mutable-node name boolean =? #f))

(define (bool-node-enable! node) (flow-graph-mutable-node-set! node #t))
65

(define (make-AST-binding-node ast name)
(make-AST-node ast make-flow-graph-mutable-node name type =? bot-type))

(define (make-AST-var-binding-node ast name var)
70 (let ([binding-node

(make-AST-binding-node
ast (string-append name ":" (symbol->string (ident-symbol-name var))))])

(ident-binding-node-set! var binding-node)
(ident-preceding-ref-set! var (make-down-ref binding-node))

75 binding-node))

(define (type-node-add! node value)
(flow-graph-mutable-node-set!
node (type-union value (flow-graph-node-output node))))

147

B. Source Code

80
(define (make-AST-binding-node-add! ast name var node)

(make-AST-node
ast make-flow-graph-function-node name eq?
(lambda (x) (type-node-add! (ident-binding-node var) x)) node))

85
(define (AST->bool-node ast name function expr)

(make-AST-node ast make-flow-graph-function-node name boolean =? function
(AST-output-node expr)))

90 (define-record-type clause-info
(nongenerative)
(fields has-escaped in-called in-formals in-rest

out-return out-return:rest-is-null out-return:rest-is-pair
out-formals out-formals-bitop)

95 (protocol
(lambda (make)

(lambda (clause
has-rest has-escaped
in-called in-formals&rest

100 out-return out-formals&rest out-formals-bitop)

(define (split-formals&rest list)
(define (rec list)

(cond
105 [(null? (cdr list)) (values ’() (car list))]

[else
(let-values ([(formals rest) (rec (cdr list))])

(values (cons (car list) formals) rest))]))
(cond

110 [(not has-rest) (values list #f)]
[else (rec list)]))

(let-values
([(in-formals in-rest) (split-formals&rest in-formals&rest)]

115 [(out-formals out-rest) (split-formals&rest out-formals&rest)])

(define (make-out-return name pred?)
(define (rest-return-type rest-bitype return-type)

(type-filter
120 return-type

(pred? (bitype-true rest-bitype))
(pred? (bitype-false rest-bitype))))

(if (not out-rest)
out-return

125 (make-AST-node clause
make-flow-graph-function-node name type =?
rest-return-type out-rest out-return)))

(make
has-escaped in-called (list->vector in-formals) in-rest

130 out-return
(make-out-return "out-return&rest-is-null" null-type ?)
(make-out-return "out-return&rest-is-pair" pair-type ?)
(list->vector out-formals) out-formals-bitop))))))

135 (define-record-type up-ref (nongenerative) (fields ast node))
(define-record-type down-ref (nongenerative) (fields node))

(define-syntax define-proc-fun

148

B. Source Code

(syntax-rules ()
140 [(_ (name clause-info formal-count arg-count args ...) body ...)

(define (name table clauses missing-clause-node)
(lambda (arg-count args ...)

(let ([clause (case-lambda-clause-ref table clauses arg-count)])
(if (not clause)

145 missing-clause-node
(let ([clause-info (case-lambda-clause-info clause)])

(let ([formal-count
(vector-length
(clause-info-out-formals clause-info))])

150 (assert (>= arg-count formal-count))
;; clause-info formal-count arg-count args
body ...))))))]))

;; procedures for proc-type
155 (define (escape-proc has-escaped-node)

(lambda () (bool-node-enable! has-escaped-node)))

(define-proc-fun (input-called-proc
clause-info formal-count arg-count callable)

160 (when callable
(let ([in-rest (clause-info-in-rest clause-info)])

(when in-rest
(type-node-add! in-rest

(cond
165 [(= arg-count formal-count) (type-of ’())]

[(> arg-count formal-count) (type-of ’(() . ()))]))))
(bool-node-enable! (clause-info-in-called clause-info))))

(define-proc-fun (input-argument-proc
170 clause-info formal-count arg-count arg-position argument-type)

(if (>= arg-position formal-count)
(begin

;; values escape that go into rest arguments
(assert (clause-info-in-rest clause-info))

175 (mark-escaped-type! argument-type)
’() ;; must return a value
)

(type-node-add!
(vector-ref (clause-info-in-formals clause-info) arg-position)

180 argument-type)))

(define-proc-fun (output-return-proc clause-info formal-count arg-count)
(cond
[(= arg-count formal-count) (clause-info-out-return:rest-is-null clause-info)]

185 [(> arg-count formal-count) (clause-info-out-return:rest-is-pair clause-info)]))

(define-proc-fun (output-argument-proc
clause-info formal-count arg-count arg-position)

(if (< arg-position formal-count)
190 (vector-ref (clause-info-out-formals clause-info) arg-position)

(clause-info-out-formals-bitop clause-info)))

;; AST * a -> ident or a
(define (AST-Ref->ident ast default)

195 (AST-case ast
[(Ref ident) ident]
[else default]))

149

B. Source Code

;; AST -> node (output-node or preceding-ref-node)
200 (define (AST->bare-var-node ast)

(define var (AST-Ref->ident ast #f))
;; feed back if (1) it is a var and (2) it is an intersected
;; var , i.e., don ’t feed back singlely mentioned variables

205 ;; NOTE : memq is O(1) b/c on a var the bubble length is at most one
(if (and var (memq var (AST-bubble-vars ast)))

(down-ref-node (ident-preceding-ref var))
(AST-output-node ast)))

210 ;; TODO : define turn-var-up / down in terms of single function
;; function must return a type
(define (turn-var-up! ast name function var)

(define preceding-ref (ident-preceding-ref var))
(define preceding-node (down-ref-node preceding-ref))

215 (define node-name (string-append "turn-var-up:" name))
(ident-preceding-ref-set!
var (make-up-ref ast (make-AST-node ast make-flow-graph-function-node node-name

bitype =? function preceding-node))))

220 ;; function must return a bitype
(define (turn-var-down! ast name function var)

(define preceding-ref (ident-preceding-ref var))
(define preceding-node (up-ref-node preceding-ref))
(define node-name (string-append "turn-var-down:" name ":"

225 (symbol->string (ident-symbol-name var))))
(ident-preceding-ref-set!
var (make-down-ref (make-AST-node

ast make-flow-graph-function-node
node-name type =? function preceding-node))))

230
(define-syntax parallel-loop

(syntax-rules ()
[(_ ast-lists arguments action)
(let loop ([asts ast-lists][args arguments][posts ’()])

235 (cond
[(null? args) posts]
[else
(let* ([vars (AST-bubble-vars (car asts))]

[pre (map* ident-preceding-ref vars)]
240 [result (action (car args))] ;; ignore result

[post (map* ident-preceding-ref vars)])
(for-each* ident-preceding-ref-set! vars pre)
(loop (cdr asts) (cdr args) (cons post posts)))]))]))

245 (define-syntax list-rev
(syntax-rules ()

[(_ acc) acc]
[(_ acc x xs ...) (list-rev (cons x acc) xs ...)]))

250 (define-syntax parallel-list
(syntax-rules ()

[(_ (asts actions) ...)
(list-rev
’()

255 (let* ([vars (AST-bubble-vars asts)]
[pre (map* ident-preceding-ref vars)]

150

B. Source Code

[result actions] ;; ignore result
[post (map* ident-preceding-ref vars)])

(for-each* ident-preceding-ref-set! vars pre)
260 post) ...)]))

(define-syntax fold-left* ;; equivalent to fold-left but ensures inlining
(syntax-rules ()

[(_ fun base args)
265 (let loop ([b base]

[a args])
(cond
[(null? a) b]
[else (loop (fun b (car a)) (cdr a))]))]

270 [(_ fun base args1 args2)
(let loop ([b base]

[a1 args1]
[a2 args2])

(cond
275 [(null? a1) b]

[else (loop (fun b (car a1) (car a2)) (cdr a1) (cdr a2))]))]))

(define-syntax for-each* ;; equivalent to for-each but ensures inlining
(syntax-rules ()

280 [(_ fun args)
(let loop ([a args])

(cond
[(null? a) (values)]
[else (fun (car a)) (loop (cdr a))]))]

285 [(_ fun args1 args2)
(let loop ([a1 args1]

[a2 args2])
(cond
[(null? a1) (values)]

290 [else (fun (car a1) (car a2)) (loop (cdr a1) (cdr a2))]))]
[(_ fun args1 args2 args3)
(let loop ([a1 args1]

[a2 args2]
[a3 args3])

295 (cond
[(null? a1) (values)]
[else (fun (car a1) (car a2) (car a3))

(loop (cdr a1) (cdr a2) (cdr a3))]))]))

300 (define-syntax map* ;; equivalent to map but ensures inlining
(syntax-rules ()

[(_ fun args)
(let loop ([a args])

(cond
305 [(null? a) ’()]

[else (cons (fun (car a)) (loop (cdr a)))]))]
[(_ fun args1 args2)
(let loop ([a1 args1]

[a2 args2])
310 (cond

[(null? a1) ’()]
[else (cons (fun (car a1) (car a2)) (loop (cdr a1) (cdr a2)))]))]))

(define-syntax parallel*
315 (syntax-rules ()

151

B. Source Code

[(_ parent-ast* ident-up? node-up? eqv? first-ref combine asts action)
(let ()

(define parent-ast parent-ast *)

320 ;; Get post values
(define posts (reverse action))

;; Mark vars as not filled with a new value yet and collect the idents
(define idents

325 (fold-left*
(lambda (idents ast)

(fold-left*
(lambda (idents ident)

(if (ident-preceding-ref ident)
330 (begin

(ident-preceding-ref-set! ident #f)
(cons ident idents))

idents))
idents

335 (AST-bubble-vars ast)))
’()
asts))

;; Fill in vars & return list of uniq vars
340 (for-each* (lambda (ast post)

(for-each*
(lambda (ident node)

(ident-preceding-ref-set!
ident

345 (cond
[(not combine) node]
[(not (ident-preceding-ref ident)) (first-ref node)]
[else
(let ([node (make-AST-node

350 parent-ast make-flow-graph-function-node
"parallel-uniq" eqv? combine
((if ident-up? up-ref-node down-ref-node)
(ident-preceding-ref ident))

((if node-up? up-ref-node down-ref-node)
355 node))])

(if ident-up?
(make-up-ref parent-ast node)
(make-down-ref node)))])))

(AST-bubble-vars ast) post))
360 asts posts)

idents)]))

(define (parallel parent-ast up? eqv? first-ref combine asts thunks)
(define (parallel-one ast thunk)

365 (define vars (AST-bubble-vars ast))
(define pre (map* ident-preceding-ref vars)) ;; save inner var nodes
(define thunk-result (thunk)) ;; ignore result
(define post (map* ident-preceding-ref vars)) ;; get inner var nodes
(for-each* ident-preceding-ref-set! vars pre) ;; restore inner vars

370 post)
(define (add-node! ident node)

(define field (if (eq? up? #t) up-ref-node down-ref-node))
(ident-preceding-ref-set!
ident

152

B. Source Code

375 (if (not (ident-preceding-ref ident))
(first-ref node)
(let ([node (make-AST-node

parent-ast make-flow-graph-function-node
"parallel-uniq" eqv? combine

380 (field (ident-preceding-ref ident))
((if (eq? up? ’mixed)

up-ref-node field) node))])
(if (eq? up? #t)

(make-up-ref parent-ast node)
385 (make-down-ref node))))))

;; Get post values
(define posts (map* parallel-one asts thunks))

390 ;; Mark vars as not filled with a new value yet and collect the idents
(define idents

(fold-left*
(lambda (idents ast)

(fold-left*
395 (lambda (idents ident)

(if (ident-preceding-ref ident)
(begin

(ident-preceding-ref-set! ident #f)
(cons ident idents))

400 idents))
idents
(AST-bubble-vars ast)))

’()
asts))

405
;; Fill in vars & return list of uniq vars
(for-each* (lambda (ast post) (for-each* add-node! (AST-bubble-vars ast) post))

asts posts)
idents)

410
;; Runs rec-fun in parallel over asts
;; but bubbles get intersected as types (and then restored to bitypes)
;; and body *... gets to run over the types
(define-syntax parallel-intersected

415 (syntax-rules ()
[(_ parent-ast asts rec-fun reachable results idents)
(begin

(define idents
(parallel*

420 parent-ast #f #t type =?
(lambda (node)

(make-down-ref
(make-AST-node
parent-ast make-flow-graph-function-node

425 "bitype->type" type =? bitype->type
(up-ref-node node))))

(lambda (node new) (type-intersect node (bitype->type new)))
asts
(parallel-loop asts asts rec-fun)))

430
(define reachable

;; determine reachability for bottom vars (b/c might not
;; be bare) intersect variables that appear twice (stop if

153

B. Source Code

;; any is bottom) (NOTE : singlely mentioned vars don ’t
435 ;; need to be checked for bottom because they don ’t

;; intersect with each other . If they were bottom then
;; the argument * value * would be bottom)
(make-AST-for-all-non-bot-node
parent-ast "reachable-by-env"

440
;; determine reachability from values
(make-AST-for-all-non-bot-node
parent-ast "reachable-by-value" (map* AST-output-node asts))

445 (map* (lambda (ident) (down-ref-node (ident-preceding-ref ident)))
idents)))

(define (intersected-node ast)
(define var (AST-Ref->ident ast #f))

450 ;; feed back if (1) it is a var and (2) it is an intersected
;; var , i.e., don ’t feed back singlely mentioned variables
;; because they will be up-refs not down-refs

;; NOTE : memq is O(1) b/c on a var the bubble length is at most one
455 (if (and var (memq var (AST-bubble-vars ast)))

(down-ref-node (ident-preceding-ref var))
(AST-output-node ast)))

;; feed back bare vars to formal positions
460 (define results (map* intersected-node asts))

(define-ignored
(for-each* (lambda (ident)

(turn-var-up! parent-ast "parallel" type->bitype ident))
idents)))]))

465
(define (move-var-to-here ast var bypass-node)

(define ref (ident-preceding-ref var))
(define preceding-ast (up-ref-ast ref))
(define preceding-node (up-ref-node ref))

470 (if (eq? ast preceding-ast) ;; may already be here b/c of parallel
preceding-node
(let* ([env-flow-node

(composition-stack-range
(make-AST-const-node ast "tf-id" env-flow-function-identity)

475 (AST-graph-context preceding-ast)
(AST-graph-context ast))]

[new-output-node
(make-AST-node
ast make-flow-graph-function-node

480 (string-append "tf-apply:" (symbol->string (ident-symbol-name var)))
bitype =? env-flow-function-apply
env-flow-node preceding-node bypass-node)])

(ident-preceding-ref-set! var (make-up-ref ast new-output-node))
new-output-node)))

485
(define (AST-bypass-nodes ast)

(define ast-bubble-vars (AST-bubble-vars ast))
(define bypass-ref (map* ident-preceding-ref ast-bubble-vars))
(assert (for-all down-ref? bypass-ref))

490 (map* down-ref-node bypass-ref))

(define (make-value-flow-graph ast)

154

B. Source Code

(define bot-node ;; Used for return of arg-count mismatch
495 (make-AST-const-node ast "top-node" bot-type))

(define bibot-node ;; Used for out-formal of arg-count mismatch
(make-AST-const-node ast "top-node" (type->bitype bot-type)))

(define bitop-node ;; Used for arguments beyond ’rest ’
(make-AST-const-node ast "bitop-node" (type->bitype top-type)))

500
(define (make-const-proc type)

(make-proc-record
(lambda () ’())
(lambda (arg-count callable) ’())

505 (lambda (arg-count position arg-type)
(when (eq? type top-type) (mark-escaped-type! arg-type))
’())

(let ([node (make-AST-const-node ast "surrogate-proc-return" type)])
(lambda (arg-count) node))

510 (let ([node (make-AST-const-node
ast "surrogate-proc-arg" (type->bitype type))])

(lambda (arg-count position) node))))
(define top-proc (make-const-proc top-type))
(define bot-proc (make-const-proc bot-type))

515 (define (type->proc-record* arg-count)
(lambda (reachable type)

(select-CFA
[(zero-CFA)
(if (not reachable)

520 ;; list-of bot-proc here so that we get the correct return
;; type out of the surrogate-fun calls
(list bot-proc)
(let ([proc* (type-procs type)])

(if (null? proc*)
525 (list bot-proc)

(begin
(for-each
(lambda (proc)

(unless (eq? proc #t)
530 ((proc-record-input-called-proc proc) arg-count #t)))

proc*)
(map (lambda (proc) (if (eq? proc #t) top-proc proc))

proc*)))))]
[(sub-zero-CFA)

535 (if (not reachable)
bot-proc
(proc-type-bits-case (type-procs type)

[(bot-proc-type-bits) bot-proc]
[(top-proc-type-bits) top-proc]

540 [(one-or-more-proc-type-bits proc)
((proc-record-input-called-proc proc) arg-count #t)
proc]))])))

(define (rec-true ast reachable)
545 (define rec rec-true)

(define ast-bubble-vars (AST-bubble-vars ast))
(define bypass-nodes (AST-bypass-nodes ast))

(AST-output-node-set!
550 ast

(AST-case ast

155

B. Source Code

[(Ref var)
(let ([ref (ident-preceding-ref var)])

(assert (down-ref? ref))
555 ;; update preceding-ref to be here

(unless (ident-assigned var)
(turn-var-up! ast "ref" type->split-bitype var))

(make-AST-type-guard-node ast "ref" reachable (down-ref-node ref)))]

560 [(Quote obj)
(make-AST-const-type-guard-node ast "quote" reachable (type-of obj))]

[(Primref safe name)
(make-AST-const-type-guard-node

565 ast "Primref" reachable (prim-name->type ast name))]

[(Set ident body)
(rec body reachable)
(make-AST-binding-node-add! ast "set!-var" ident (AST-output-node body))

570 (make-AST-const-type-guard-node
ast "set!" (AST->bool-node ast "set!- reach" non-bot-type? body) top-type)]

[(Seq expr1 expr2)
(rec expr1 reachable)

575 (for-each* (lambda (x) (turn-var-down! ast "seq" bitype->type x))
(AST-bubble-vars expr1))

(rec expr2 (AST->bool-node ast "reach" non-bot-type? expr1))
(AST->type-id-node ast "seq" expr2)]

580 [(If test conseq altern)
(rec test reachable)

(parallel*
ast #t #t bitype =? (lambda (x) x) bitype-union (list conseq altern)

585 (parallel-list
[conseq
(begin

;; Turn those mentioned in test and conseq back down conseq
(for-each*

590 (lambda (x) (turn-var-down! ast "conseq" bitype-true x))
(AST-bubbles-intersect (AST-bubble-vars test)

(AST-bubble-vars conseq)))
(rec conseq (AST->bool-node ast "reach-conseq" true-type? test)))]

[altern
595 (begin

;; Turn those mentioned in test and altern back down altern
(for-each*
(lambda (x) (turn-var-down! ast "altern" bitype-false x))
(AST-bubbles-intersect (AST-bubble-vars test)

600 (AST-bubble-vars altern)))
(rec altern (AST->bool-node ast "reach-altern" false-type? test)))]))

(make-AST-node
ast make-flow-graph-function-node "union" type =? type-union

605 (AST-output-node conseq) (AST-output-node altern))]

[(Letrec bindings body)
(let ([lhs (map* letrec-binding-lhs (vector->list bindings))]

[rhs (map* letrec-binding-rhs (vector->list bindings))])
610

156

B. Source Code

;; Set-up bindings
(define-ignored

(for-each*
(lambda (var) (make-AST-var-binding-node ast "letrec-binding" var))

615 lhs))

;; intersect rhs
(parallel-intersected
ast rhs (lambda (rhs) (rec rhs reachable))

620 body-reachable intersected-rhs idents)

;; Wire output of rhs to lhs bindings
(for-each*
(lambda (var node)

625 (make-AST-binding-node-add! ast "letrec-binding-add" var node))
lhs intersected-rhs)

;; Do the body
(for-each*

630 (lambda (var) (turn-var-down! ast "letrec" bitype->type var))
(AST-bubble-vars body))

(rec body body-reachable)

;; remove vars bound by letrec
635 (for-each* ident-preceding-ref-delete! lhs)

;; return
(AST->type-id-node ast "letrec-out" body))]

640 [(CaseLambda table clauses)
(let () ;; needed to allow ’define ’

(define (make-out-formal clause var in-formal)
(define ref (ident-preceding-ref var))
(if (down-ref? ref)

645 ;; turn the var back up if it was never reffed
(let ([node (down-ref-node ref)])

(assert (eq? in-formal node))
(make-AST-node
ast make-flow-graph-function-node

650 "unreffed-or-set !-var" bitype =? type->bitype node))
;; move all remaining vars to body result
(make-AST-bitype-id-node
clause (string-append "out-formal:" (symbol->string

(ident-symbol-name var)))
655 (move-var-to-here (case-lambda-clause-body clause)

var in-formal))))

(define (calculate-clause clause)
(define formal-idents (case-lambda-clause-formals clause))

660 (define rest-ident (case-lambda-clause-rest clause))
(define formals&rest-ident (case-lambda-clause-formals&rest clause))

;; ;; input nodes
(define in-called (make-AST-enable-node clause "in-called"))

665 ;; setup vars bound by clause (don ’t set ast b/c it ’s down-var)
(define in-formals&rest

(map*
(lambda (x) (make-AST-var-binding-node clause "lambda-binding" x))
formals&rest-ident))

157

B. Source Code

670
;; ;; internal nodes
(define in-reachable

(make-AST-for-all-non-bot-node
clause "in-formals-reachable" in-called in-formals&rest))

675
;; do body
(define-ignored (rec (case-lambda-clause-body clause) in-reachable))

;; ;; output nodes
680 (define out-return

(AST->type-id-node clause "case-lambda-return"
(case-lambda-clause-body clause)))

(define out-formals&rest
(map* (lambda (var in-formal) (make-out-formal clause var in-formal))

685 formals&rest-ident in-formals&rest))

;; remove formal vars bound by clause
(define-ignored

(for-each* ident-preceding-ref-delete! formals&rest-ident))
690

;; Set the clause info
(case-lambda-clause-info-set!
clause
(make-clause-info

695 clause rest-ident has-escaped in-called in-formals&rest
out-return out-formals&rest bitop-node)))

(define has-escaped (make-AST-enable-node ast "has-escaped"))

700 ;; We don ’t need to intersect the bubble vars (they are
;; always bypassed) but we must do a parallel to keep the up
;; vs down refs correct .

(let* ([clauses (vector->list clauses)]
705 [asts (map* case-lambda-clause-body clauses)])

(parallel* ast #t #t bitype =? #f #f asts
(parallel-loop
asts clauses
(lambda (clause)

710 (define body (case-lambda-clause-body clause))
(let ([bubble-vars (AST-bubble-vars body)]

[bypass-nodes (AST-bypass-nodes body)])
(calculate-clause clause)
(map* (lambda (x y) (move-var-to-here ast x y))

715 bubble-vars bypass-nodes))))))

(make-AST-node
ast make-flow-graph-function-node "mark-escapes" eq?
(lambda (has-escaped)

720 (when has-escaped
(for-each*
(lambda (arg-count)

((input-called-proc table clauses #f) arg-count #t)
(for-each*

725 (lambda (arg-position)
((input-argument-proc table clauses #f)
arg-count arg-position top-type))

(iota arg-count)))

158

B. Source Code

(iota (vector-length table))))
730 #f)

has-escaped)
(vector-for-each
(lambda (clause)

(make-AST-node
735 ast make-flow-graph-function-node "out-return-mark-escapes" eq?

(lambda (has-escaped out-return)
(when has-escaped (mark-escaped-type! out-return))
#f)

has-escaped
740 (clause-info-out-return (case-lambda-clause-info clause))))

clauses)

(make-AST-const-type-guard-node
ast "case-lambda" reachable

745 (make-proc-type
(escape-proc has-escaped)
(input-called-proc table clauses #f)
(input-argument-proc table clauses #f)
(output-return-proc table clauses bot-node)

750 (output-argument-proc table clauses bibot-node))))]

[(App fun actuals)
(let () ;; needed to allow ’define ’

(define fun&actuals (cons fun (vector->list actuals)))
755 (define arg-count (vector-length actuals))

;; ;; Pre-call
;; intersect fun& actuals
(parallel-intersected

760 ast fun&actuals (lambda (expr) (rec expr reachable))
call-reachable intersected-fun&actuals idents)

;; NOTE : also signals fun as callable
(define surrogate-fun

765 (make-AST-node
ast make-flow-graph-function-node "surrogate-fun" proc-type-bits =?
(type->proc-record* arg-count)
call-reachable (car intersected-fun&actuals)))

(define intersected-actuals (cdr intersected-fun&actuals))
770

;; ;; Call entry

;; send arguments to function
(define-ignored

775 (for-each*
(lambda (position intersected-actual)

(make-AST-node
ast make-flow-graph-function-node "input-argument" eq?
(select-CFA

780 [(zero-CFA)
(lambda (proc-type* intersected-actual)

(for-each (lambda (proc-type)
((proc-record-input-argument-proc proc-type)
arg-count position intersected-actual))

785 proc-type *))]
[(sub-zero-CFA)
(lambda (proc-type intersected-actual)

159

B. Source Code

((proc-record-input-argument-proc proc-type)
arg-count position intersected-actual))])

790 surrogate-fun intersected-actual))
(iota arg-count)
intersected-actuals))

;; ;; Call return
795 (define app-out-return

(make-AST-node
ast make-flow-graph-join-node "app-return" type =?
(select-CFA
[(zero-CFA)

800 (lambda (proc-type *)
(when (null? proc-type *)

(error ’app-out-return "expected␣at␣least␣one␣proc-type"))
(fold-left
(lambda (node proc-type)

805 (make-AST-node
ast make-flow-graph-function-node "return-value" type =?
(lambda (type1 type2) (type-union type1 type2))
node ((proc-record-output-return-proc proc-type) arg-count)))

((proc-record-output-return-proc (car proc-type *)) arg-count)
810 (cdr proc-type *)))]

[(sub-zero-CFA)
(lambda (proc-type)

((proc-record-output-return-proc proc-type) arg-count))])
surrogate-fun))

815
(define app-out-formals

(map*
(lambda (position)

(make-AST-node
820 ast make-flow-graph-join-node "app-out-formal" bitype =?

(select-CFA
[(zero-CFA)
(lambda (proc-type *)

(when (null? proc-type *)
825 (error ’app-out-return "expected␣at␣least␣one␣proc-type"))

(fold-left
(lambda (node proc-type)

(make-AST-node
ast make-flow-graph-function-node "arg-out-value" bitype =?

830 (lambda (bitype1 bitype2) (bitype-union bitype1 bitype2))
node ((proc-record-output-argument-proc proc-type)

arg-count position)))
((proc-record-output-argument-proc (car proc-type *))
arg-count position)

835 (cdr proc-type *)))]
[(sub-zero-CFA)
(lambda (proc-type)

((proc-record-output-argument-proc proc-type)
arg-count position))])

840 surrogate-fun))
(iota arg-count)))

;; ;; Post-call

845 ;; intersect formal output vars
(define-ignored

160

B. Source Code

(for-each*
(lambda (position actual formal)

(let ([var (AST-Ref->ident actual #f)])
850 (when (and var (not (ident-assigned var)))

(ident-preceding-ref-set!
var
(make-up-ref
ast

855 (make-AST-node
ast make-flow-graph-function-node
"post-call-var-intersect" bitype =?
;; NOTE : memq is O(1) b/c on a var the bubble length
;; is at most one

860 (if (memq var (AST-bubble-vars actual))
;; The var is mentioned multiple times thus the
;; bitype has already been " void scrambled " by
;; the parallel-intersect so we don ’t have to do
;; that , but we new intersects need to be

865 ;; true / false specific . We shouldn ’t do
;; it because we might not be the first mention
;; and we don ’t want to scramble info from
;; other arguments .
bitype-intersect

870 ;; The var isn ’t mentioned multiple times so we
;; have to do our own scrambling . This is OK ,
;; since we are the only reference in this
;; application .
(lambda (formal preceding)

875 (bitype-intersect
formal (bitype->void-bitype preceding))))

formal (up-ref-node (ident-preceding-ref var))))))))
(iota (vector-length actuals))
(vector->list actuals)

880 app-out-formals))

;; determine post call return value
(define (app-out-reachable-by-value base actual formal)

(make-AST-node
885 ast make-flow-graph-function-node "app-out-reachable-by-value" type =?

(lambda (base actual formal)
(type-filter
base
(non-bot-type? (type-intersect actual (bitype-true formal)))

890 (non-bot-type? (type-intersect actual (bitype-false formal)))))
base actual formal))

(define (app-out-reachable-by-env base ident)
(make-AST-node

895 ast make-flow-graph-function-node "app-out-reachable-by-env" type =?
(lambda (base bitype)

(type-filter
base
(non-bot-type? (bitype-true bitype))

900 (non-bot-type? (bitype-false bitype))))
base
(up-ref-node (ident-preceding-ref ident))))

(fold-left*
905 app-out-reachable-by-env

161

B. Source Code

(fold-left* app-out-reachable-by-value
app-out-return intersected-actuals app-out-formals)

idents))]))

910 ;; compute new nodes based on previous reference and bypass
(for-each* (lambda (x y) (move-var-to-here ast x y))

ast-bubble-vars bypass-nodes))

(rec-true ast (make-AST-const-node ast "<top>" #t)))
915

)� �
B.2.3. Post-processing

Listing B.12: ast-unparse.ss� �
(library (ast-unparse)
(export AST->Trex)
(import (rnrs) (srfi-39) (flow-graphs) (ast) (types) (value-flow-graphs)

(prefix (tprogram) Trex:))
5

;; prim type table -- duplicates knowledge in prims
(define mark-safe?

(let () ;; deeded to allow define
(define (arity-match? arity actual-types)

10 (if (>= arity 0)
(= arity (length actual-types))
(>= (+ (- arity) 1) (length actual-types))))

(define (type-match? type actual-type)
(let ([type (maybe-non-proc-type->type type)])

15 (or (type =? type top-type) (type <=? actual-type type))))
(define (type-with-rest-match? types actual-types)

(let f ([types types] [actual-types actual-types])
(if (or (null? actual-types) (null? types))

#t
20 (let ([type (car types)] [remaining-types (cdr types)])

(and
(type <=? (car actual-types) (maybe-non-proc-type->type type))
(if (null? remaining-types)

(f types (cdr actual-types))
25 (f remaining-types (cdr actual-types))))))))

(define (types-match? sig actual-types)
(let ([arity (car sig)] [types (cdr sig)])

(if (>= arity 0)
(for-all type-match? types actual-types)

30 (type-with-rest-match? types actual-types))))
(define-syntax build-prim-entry

(syntax-rules ()
[(_ ht (prim* ...) ?value)
(let ([value ?value])

35 (hashtable-set! ht ’prim* value) ...)]
[(_ ht prim value) (hashtable-set! ht ’prim value)]))

(define-syntax define-prim-table
(lambda (x)

162

B. Source Code

(define (ellipsis? x)
40 (and (identifier? x) (free-identifier =? x # ’(... ...))))

(define (find-arity arg*)
(syntax-case arg* ()

[(arg arg* ... dots)
(ellipsis? #’dots)

45 #‘(#,(fx- -1 (length #’(arg arg* ...))) arg arg* ...)]
[(arg* ...) #‘(#,(length #’(arg* ...)) arg* ...)]))

(syntax-case x (sig)
[(_ name (name* [sig arg** ...] extras ** ...) ...)
(with-syntax ([(((arity ** arg*** ...) ...) ...)

50 (map (lambda (arg**)
(map find-arity arg**))

#’((arg** ...) ...))])
#’(define name

(let ([ht (make-eq-hashtable)])
55 (build-prim-entry

ht name* (list (list (list arity** arg *** ...) ...)
(list extras ** ...))) ...

ht)))])))
(define-prim-table prim-table

60 ((car cdr) [sig (pair-type-bits)])
((set-car! set-cdr !) [sig (pair-type-bits top-type)])
(make-vector [sig (length-type-bits) (length-type-bits top-type)])
(vector-length [sig (vector-type-bits)])
(vector-ref [sig (vector-type-bits length-type-bits)]

65 (let ([vector-type (maybe-non-proc-type->type vector-type-bits)]
[length-type (maybe-non-proc-type->type length-type-bits)])

(lambda (src name types)
(if (and (= (length types) 2) (type <=? (car types) vector-type))

(if (type <=? (cadr types) length-type)
70 (Trex:Primref src #t ’$vector-check-range-ref)

(Trex:Primref src #t ’$vector-check-fx-range-ref))
(Trex:Primref src #t name)))))

(vector-set! [sig (vector-type-bits length-type-bits top-type)]
(let ([vector-type (maybe-non-proc-type->type vector-type-bits)]

75 [length-type (maybe-non-proc-type->type length-type-bits)])
(lambda (src name types)

(if (and (= (length types) 3) (type <=? (car types) vector-type))
(if (type <=? (cadr types) length-type)

(Trex:Primref src #t ’$vector-check-range-set !)
80 (Trex:Primref src #t ’$vector-check-fx-range-set !))

(Trex:Primref src #t name)))))
((fldiv flmod fldiv0 flmod0 flexpt) [sig (flonum-type-bits flonum-type-bits)])
((flatan fllog) [sig (flonum-type-bits) (flonum-type-bits flonum-type-bits)])
((flsqrt flabs flnumerator fldenominator flfloor flceiling fltruncate

85 flround flexp flsin flcos fltan flasin flacos)
[sig (flonum-type-bits)])

((fl+ fl*) [sig (flonum-type-bits ...)])
((fl- fl/ flmax flmin)
[sig (flonum-type-bits) (flonum-type-bits flonum-type-bits ...)])

90 ((flpositive? flnegative? flzero? flinteger?
flodd? fleven? flfinite? flinfinite? flnan ?)

[sig (flonum-type-bits)])
((fl>? fl <? fl>=? fl <=? fl=?)
[sig (flonum-type-bits flonum-type-bits flonum-type-bits ...)])

95 (fxxor [sig (fxnum-type-bits ...)])
((fx+ fx*) [sig (fxnum-type-bits ...)])
((fx- fx/) [sig (fxnum-type-bits fxnum-type-bits ...)])

163

B. Source Code

((fxarithmetic-shift-left fxarithmetic-shift-right fxarithmetic-shift)
[sig (fxnum-type-bits fxnum-type-bits)])

100 ((fx=? fx <=? fx>=? fx <? fx>?)
[sig (fxnum-type-bits fxnum-type-bits fxnum-type-bits ...)])

((fx <= fx< fx= fx>= fx>) [sig (fxnum-type-bits fxnum-type-bits ...)])
((char=? char <=? char <? char>? char> =?)
[sig (char-type-bits char-type-bits ...)])

105 ((r6rs:char=? r6rs:char <=? r6rs:char <? r6rs:char>? r6rs:char> =?)
[sig (char-type-bits char-type-bits char-type-bits ...)])

(integer->char [sig (fxnum-type-bits)])
(char->integer [sig (char-type-bits)])
(string-length [sig (string-type-bits)])

110 (string [sig (char-type-bits ...)])
(make-string [sig (fxnum-type-bits) (fxnum-type-bits char-type-bits)])
;; can do better with this , need to handle like vector-set ! and vector-ref
(string-set! [sig (string-type-bits fxnum-type-bits char-type-bits)])
(string-ref [sig (string-type-bits fxnum-type-bits)]))

115 (lambda (src prim actual-types)
(define (check-sig sig)

(and (arity-match? (car sig) actual-types)
(types-match? sig actual-types)))

(define (check-prim name sigs extras)
120 (cond

[(and (pair? extras) (procedure? (car extras)))
((car extras) src name actual-types)]

[(not (null? extras)) #f]
[(exists check-sig sigs) (Trex:Primref src #f name)]

125 [else #f]))
(cond
[(hashtable-ref prim-table prim #f) =>
(lambda (v) (apply check-prim prim v))]

[else #f]))))
130

(define (map-values vals f ls . more)
(define (return-values vals vals*)

(if (null? vals*)
(apply values (map list vals))

135 (apply values (map cons vals vals*))))
(if (null? more)

(let map1 ([ls ls])
(if (null? ls)

(apply values vals)
140 (let-values ([vals (f (car ls))] [vals* (map1 (cdr ls))])

(return-values vals vals*))))
(let map-more ([ls ls] [more more])

(if (null? ls)
(apply values vals)

145 (let-values ([vals (apply f (car ls) (map car more))]
[vals* (map-more (cdr ls) (map cdr more))])

(return-values vals vals*))))))

(define (AST-output-type ast) (flow-graph-node-output (AST-output-node ast)))
150

(define (AST->Trex ast)
(define changed (make-parameter #f))

(define (rec ast)
155 (define src (AST-src ast))

(values

164

B. Source Code

(AST-case ast
;; Things that don ’t collapse
[(Ref id) (Trex:Ref src id)]

160 [(Quote obj) (Trex:Quote src obj)]
[(Primref safe name) (Trex:Primref src safe name)]
[(Set id body) (let-values ([(body body-type) (rec body)])

(Trex:Set src id body))]
[(App fun actuals)

165 (let-values ([(actuals actual-types)
(map-values (list ’() ’()) rec (vector->list actuals))])

(AST-case fun
[(Primref safe name)
(cond

170 [(and safe (mark-safe? (AST-src fun) name actual-types)) =>
(lambda (fun) (Trex:App src fun actuals))]

[else
(let-values ([(fun fun-type) (rec fun)])

(Trex:App src fun actuals))])]
175 [else

(let-values ([(fun fun-type) (rec fun)])
(Trex:App src fun actuals))]))]

[(Letrec bindings body)
(let ([bindings (vector->list bindings)])

180 (let-values ([(body type) (rec body)]
[(rhs rhs-types)
(map-values (list ’() ’()) rec

(map letrec-binding-rhs bindings))])
(Trex:Letrec src (map letrec-binding-lhs bindings) rhs body)))]

185 [(CaseLambda table clauses)
(let ([Clause->Trex

(lambda (clause)
(let-values ([(body type) (rec (case-lambda-clause-body clause))])

(Trex:CaseLambdaClause
190 (append (vector->list (case-lambda-clause-formals clause))

(or (case-lambda-clause-rest clause) ’()))
body)))]

[Clause-called
(lambda (clause)

195 (flow-graph-node-output
(clause-info-in-called (case-lambda-clause-info clause))))])

(Trex:CaseLambda
src (map Clause->Trex

(filter Clause-called (vector->list clauses)))))]
200

;; Things that might collapse
[(If test conseq altern)
(let-values ([(test type) (rec test)]

[(conseq c-type) (rec conseq)]
205 [(altern a-type) (rec altern)])

(let ([conseq-reachable (true-type? type)]
[altern-reachable (false-type? type)])

(cond
[(and conseq-reachable altern-reachable)

210 (Trex:If src test conseq altern)]
[conseq-reachable (changed #t) (Trex:Seq src test conseq)]
[altern-reachable (changed #t) (Trex:Seq src test altern)]
[else (changed #t) test])))]

[(Seq expr1 expr2)
215 (let-values ([(expr1 e1- type) (rec expr1)]

165

B. Source Code

[(expr2 e2-type) (rec expr2)])
(if (non-bot-type? e1- type)

(Trex:Seq src expr1 expr2)
(begin (changed #t) expr1)))])

220 (AST-output-type ast)))

(let ([trex
(AST-case ast

[(App fun actuals)
225 (AST-case fun

[(Primref safe name) ;; assumes " escape " is always unsafe
(cond
[(eq? name ’escape)
(cond

230 [(= 1 (vector-length actuals))
(let-values ([(body type) (rec (vector-ref actuals 0))])

body)]
[else #f])]

[else #f])]
235 [else #f])]

[else #f])])
(or trex (assertion-violation

’AST->Trex "Incorrect␣toplevel␣program␣expression" ast))))

240)� �
B.3. Data types

B.3.1. Abstract syntax trees

Listing B.13: idents.ss� �
(library (idents)

(export
make-ident ident? ident-name ident-symbol-name
ident-number ident-number-set!

5 ident-assigned ident-assigned-set!
ident-locations ident-locations-set!
ident-asts ident-asts-set!
ident-preceding-ref ident-preceding-ref-set! ident-preceding-ref-delete!
ident-binding-node ident-binding-node-set!

10 ident=?
ident <?
ident>?
)

(import (rnrs) (records-io))
15

(define-record-type ident
(fields name symbol-name

(mutable assigned) ;; bool
(mutable number) ;; int

166

B. Source Code

20 (mutable asts) ;; list [ast (ref |set)]
(mutable locations) ;; list [int]
(mutable preceding-ref) ;; up-ref or down-ref
(mutable binding-node) ;; node [type]
)

25 (nongenerative)
(protocol
(lambda (make)

(lambda (name symbol-name assigned)
(make name symbol-name assigned -1 ’() ’() #f #f)))))

30
(define (ident=? x y) (= (ident-number x) (ident-number y)))
(define (ident <? x y) (< (ident-number x) (ident-number y)))
(define (ident>? x y) (> (ident-number x) (ident-number y)))
(define (ident-preceding-ref-delete! ident)

35 (ident-preceding-ref-set! ident #f))

(record-writer (record-type-descriptor ident)
(lambda (r p wr)

(display "#[ident␣" p)
40 (display (ident-symbol-name r) p)

(display "␣" p)
(write (ident-assigned r) p)
(display "]" p)))

45)� �
Listing B.14: tprogram.ss� �

(library (tprogram)
(export Trex? Trex-case

Ref Quote Primref PrimrefWrap Set App If CaseLambda Seq
Letrec Trex-CaseLambdaClause-case CaseLambdaClause)

5 (import (rnrs) (datatype) (idents))

(define-datatype (Trex-CaseLambdaClause)
(CaseLambdaClause (formals (improper-list-of ident?)) (body Trex?)))

10 (define-datatype (Trex)
(Ref src (id ident?))
(Quote src obj)
(Primref src (safe boolean ?) prim-identifier)
(PrimrefWrap (primref Trex?) (expr Trex?)) ;; Used by benchmarking code

15 (Set src (id ident?) (expr Trex?))
(App src (expr Trex?) (expr* (list-of Trex?)))
(If src (test Trex?) (thn Trex?) (els Trex?))
(CaseLambda src (clause* (list-of Trex-CaseLambdaClause ?)))
(Seq src (expr1 Trex?) (expr2 Trex?))

20 (Letrec src (id* (list-of ident?)) (expr* (list-of Trex?)) (body Trex?)))

)� �
Listing B.15: ast.ss� �

(library (ast)

167

B. Source Code

(export
AST? AST-case Ref Quote Primref Set App If CaseLambda Seq Letrec

5 Trex->AST

AST-src ;; obj
AST-context ;; myers-stack of AST
AST-output-node ;; flow-graph-node of type

10 AST-output-node-set!
AST-graph-context ;; composition-stack of env-flow-functions
AST-graph-context-set!
AST-graph-context-thunk ;; (lambda () ...)
AST-graph-context-thunk-set!

15 AST-contained-nodes ;; list of flow-graph-node
AST-contained-nodes-set!
AST-bubble-vars ;; list of ident
AST-bubble-vars-set!
AST-tree-start-location ;; int

20 AST-tree-start-location-set!
AST-tree-end-location ;; int
AST-tree-end-location-set!

case-lambda-clause?
25 case-lambda-clause-ref

case-lambda-clause-formals case-lambda-clause-rest
case-lambda-clause-formals&rest case-lambda-clause-body
case-lambda-clause-info case-lambda-clause-info-set!
case-lambda-clause-contained-nodes case-lambda-clause-contained-nodes-set!

30
letrec-binding-lhs letrec-binding-rhs
)

(import (rnrs) (prefix (tprogram) Trex:)
35 (idents) (srfi-39) (datatype) (myers-stacks)

(only (composition-stacks) composition-stack ?)
(only (flow-graphs) flow-graph-node ?))

(define-datatype
40 (AST (src #f)

(output-node #f flow-graph-node ?)
(contained-nodes ’() #;(list-of flow-graph-node ?))
(context #f myers-stack ?) ;; myers stack of ast-nodes including self
(graph-context #f composition-stack ?)

45 (graph-context-thunk #f #;(pair flow-graph-node ? (list-of ast)))
(bubble-vars ’() #;(list-of ident ?))
(tree-start-location #f integer ?)
(tree-end-location #f integer ?)
)

50
(Ref (id ident?))
(Quote obj)
(Primref (safe boolean ?) (name symbol ?))
(Set (id ident?) (expr AST?))

55 (App (expr AST?) (expr* (vector-of AST?)))
(If (test AST?) (thn AST?) (els AST?))
(CaseLambda (table (vector-of (lambda (x) (or (not x) (integer? x)))))

(clause* (vector-of case-lambda-clause ?)))
(Seq (expr1 AST?) (expr2 AST?))

60 (Letrec (binding* (vector-of letrec-binding ?)) (body AST?)))

168

B. Source Code

(define-record-type letrec-binding
(nongenerative)
(fields lhs rhs)

65 (protocol
(lambda (make-letrec-binding)

(lambda (lhs rhs)
(assert (ident? lhs))
(assert (AST? rhs))

70 (make-letrec-binding lhs rhs)))))

(define-record-type case-lambda-clause
(nongenerative)
(fields formals rest body formals&rest

75 (mutable info) (mutable contained-nodes))
(protocol
(lambda (make)

(lambda (formals rest body)
(assert ((vector-of ident ?) formals))

80 (assert (or (not rest) (ident? rest)))
(assert (AST? body))
(make formals rest body

(append (vector->list formals) (if rest (list rest) ’())) #f ’())))))

85 ;; vector [case-lambda-clause] -> vector [#f or clause-index]
;; last slot is for arguments beyond vector-length
(define (make-case-lambda-table clauses)

(define (vector-set-or! vector index value)
(vector-set! vector index (or (vector-ref vector index) value)))

90 (define has-rest (vector-map case-lambda-clause-rest clauses))
(define num-non-rest-args

(vector-map vector-length
(vector-map case-lambda-clause-formals clauses)))

(define table-length (+ 2 (apply max (cons 0 (vector->list num-non-rest-args)))))
95 (define table (make-vector table-length #f))

(let clause-loop ([clause-number 0][min-rest +inf .0])
(unless (= clause-number (vector-length clauses))

(let ([table-index (vector-ref num-non-rest-args clause-number)])
(if (not (vector-ref has-rest clause-number))

100 (begin
(vector-set-or! table table-index clause-number)
(clause-loop (+ 1 clause-number) min-rest))

(begin
(let rest-loop ([table-index table-index])

105 (unless (or (>= table-index min-rest)
(>= table-index table-length))

(vector-set-or! table table-index clause-number)
(rest-loop (+ 1 table-index))))

(clause-loop (+ 1 clause-number) (min min-rest table-index)))))))
110 table)

;; case-lambda-table * vector [case-lambda-clause] * int -> #f or case-lambda-clause
(define (case-lambda-clause-ref table clauses arg-count)

(let ([index (vector-ref table (min arg-count (- (vector-length table) 1)))])
115 (and index (vector-ref clauses index))))

(define (Trex->AST trex)
(define (source src ast) (AST-src-set! ast src) ast)

169

B. Source Code

120 (define (rec0 trex)
(define (rec trex) (rec0 trex))

(define (CaseLambdaClause->AST clause)
(define (improper-list-split list default)

125 (cond
[(null? list) (values ’() default)]
[(pair? list)
(let-values ([(front rest) (improper-list-split (cdr list) default)])

(values (cons (car list) front) rest))]
130 [else (values ’() list)]))

(Trex:Trex-CaseLambdaClause-case clause
[(Trex:CaseLambdaClause formals body)
(let-values ([(front rest) (improper-list-split formals #f)])

(make-case-lambda-clause (list->vector front) rest (rec body)))]))
135

(Trex:Trex-case trex
[(Trex:Ref src id) (source src (Ref id))]
[(Trex:Quote src obj) (source src (Quote obj))]
[(Trex:Primref src safe name) (source src (Primref safe name))]

140 [(Trex:Set src id expr) (source src (Set id (rec expr)))]
[(Trex:App src expr expr*)
(source src (App (rec expr) (list->vector (map rec expr*))))]

[(Trex:If src test thn els)
(source src (If (rec test) (rec thn) (rec els)))]

145 [(Trex:CaseLambda src clause *)
(let ([clause* (list->vector (map CaseLambdaClause->AST clause *))])

(source src (CaseLambda (make-case-lambda-table clause *) clause *)))]
[(Trex:Seq src expr1 expr2)
(source src (Seq (rec expr1) (rec expr2)))]

150 [(Trex:Letrec src lhs rhs body)
(source src (Letrec

(list->vector (map make-letrec-binding lhs (map rec rhs)))
(rec body)))]))

155 (define (rec1 ast context)
(let ([context (myers-stack-cons ast context)])

(define (rec ast) (rec1 ast context))
(AST-context-set! ast context)

160 (AST-case ast
[(Ref var) (values)]
[(Quote obj) (values)]
[(Primref safe name) (values)]
[(Set var expr) (rec expr)]

165 [(App fun actuals) (rec fun) (vector-for-each rec actuals)]
[(If test conseq altern) (rec test) (rec conseq) (rec altern)]
[(CaseLambda table clauses)
(vector-for-each (lambda (clause) (rec (case-lambda-clause-body clause)))

clauses)]
170 [(Seq expr1 expr2) (rec expr1) (rec expr2)]

[(Letrec bindings body)
(vector-for-each (lambda (binding) (rec (letrec-binding-rhs binding)))

bindings)
175 (rec body)])))

(define ast (rec0 trex))
(rec1 ast myers-stack-null)

170

B. Source Code

ast)
180

)� �
B.3.2. Flow graphs

Listing B.16: flow-graphs.ss� �
(library (flow-graphs)

(export

make-flow-graph ;; void -> flow-graph
5 flow-graph? ;; obj -> bool

flow-graph-step! ;; flow-graph -> void
flow-graph-stable? ;; flow-graph -> bool
flow-graph-print
;; (printer :

10 ;; (contain : string * list of flow-graph-node * list of obj -> void) *
;; (node : obj) -> void) *
;; (labeler : flow-graph-node -> string) *
;; obj -> void

15 flow-graph-node? ;; obj -> bool
flow-graph-node-output ;; flow-graph-node -> obj
flow-graph-node-info ;; flow-graph-node -> obj

;; flow-graph * info * eqv? * output -> flow-graph-input-node
20 make-flow-graph-mutable-node

;; flow-graph-mutable-node ? ;; obj -> bool
flow-graph-mutable-node-set! ;; flow-graph-input-node * output -> void

25 ;; flow-graph * info * eqv? * function * output -> flow-graph-lazy-node
make-flow-graph-lazy-node

;; flow-graph-lazy-node ? ;; obj -> bool
flow-graph-lazy-node-force! ;; flow-graph-lazy-node * args ... -> void

30
;; flow-graph * info * eqv? * function * args ... -> flow-graph-function-node
make-flow-graph-function-node

;; flow-graph-function-node ? ;; obj -> bool
35

;; flow-graph * info * eqv? * input -> flow-graph-join-node
make-flow-graph-join-node

;; flow-graph-join-node ? ;; obj -> bool
40)

(import (except (rnrs) case cond if) (safe-forms) (records-io)
(rnrs mutable-pairs))

;; ;;;;;;;;;;;;;;
45 ;; Flow Graphs

;; ;;;;;;;;;;;;;;

171

B. Source Code

(define-record-type flow-graph
(nongenerative)

50 (fields (mutable pending-list)) ;; TODO : as a rotating vector of lists
(protocol (lambda (make) (lambda () (make ’())))))

(define (flow-graph-pending-add! flow-graph node)
(flow-graph-pending-list-set!

55 flow-graph (cons node (flow-graph-pending-list flow-graph))))

(define (flow-graph-pending-remove! flow-graph)
(let ([x (flow-graph-pending-list flow-graph)])

(flow-graph-pending-list-set! flow-graph (cdr x))
60 (car x)))

(define (flow-graph-step! graph)
(define node (flow-graph-pending-remove! graph))
(when (flow-graph-node-pending node)

65 (flow-graph-node-pending-set! node #f)
(node-output-set! node ((flow-graph-node-action node) node))))

(define (flow-graph-stable? graph) (null? (flow-graph-pending-list graph)))

70 ;; ;;;;;;;;;;;;;;
;; Graph Nodes
;; ;;;;;;;;;;;;;;
(define-record-type flow-graph-node

(nongenerative)
75 (fields graph

info
(mutable eqv?)
(mutable pending) ;; #t or #f
(mutable output)

80 #;(mutable outputs) ;; for debugging
(mutable action) ;; void -> output
(mutable listeners) ;; list of (node or (cons (node or #f) ’()))
)

(protocol
85 (lambda (make)

(lambda (graph info eqv? output action)
(assert (string? info))
(assert (or (not eqv?) (eqv? output output))) ;; Sanity check
(make graph info eqv? #f output action ’())))))

90
;; ;;;;;;;;;;;;;;
;; Lazy Node
;; ;;;;;;;;;;;;;;
(define (flow-graph-lazy-node-action node)

95 (error ’flow-graph-lazy-node "evaluating␣unforced␣lazy␣node" node))
(define (make-flow-graph-lazy-node graph info eqv? output)

(make-flow-graph-node graph info eqv? output flow-graph-lazy-node-action))

(define-syntax flow-graph-lazy-node-force!
100 (lambda (stx)

(syntax-case stx ()
[(_ n fun args ...)
(with-syntax ([(arguments ...) (generate-temporaries #’(args ...))])

#’(let ([node n]
105 [function fun]

172

B. Source Code

[arguments args] ...)
(assert (eq? (flow-graph-node-graph node)

(flow-graph-node-graph arguments))) ...
(assert (eq? (flow-graph-node-action node)

110 flow-graph-lazy-node-action))
(flow-graph-node-action-set!
node (lambda (node)

(function (flow-graph-node-output arguments) ...)))
(add-to-listeners! arguments node) ...

115 (add-to-pending! node)))])))

;; ;;;;;;;;;;;;;;
;; Function Node
;; ;;;;;;;;;;;;;;

120 (define-syntax make-flow-graph-function-node
(lambda (stx)

(syntax-case stx ()
[(_ graph info eqv? function arguments ...)
(with-syntax ([(fun args ...)

125 (generate-temporaries #’(function arguments ...))])
#’(let ([g graph]

[fun function]
[args arguments] ...)

(assert (eq? g (flow-graph-node-graph args))) ...
130 (let ([action (lambda (node) (fun (flow-graph-node-output args) ...))])

(let ([node (make-flow-graph-node g info eqv? (action #f) action)])
(add-to-listeners! args node) ...
node))))])))

135 ;; ;;;;;;;;;;;;;;
;; Mutable Node
;; ;;;;;;;;;;;;;;
(define (flow-graph-mutable-node-action node)

(error ’flow-graph-mutable-node "shouldn ’t␣be␣on␣pending␣queue" node))
140 (define (make-flow-graph-mutable-node graph info eqv? output)

(make-flow-graph-node graph info eqv? output flow-graph-mutable-node-action))
(define (flow-graph-mutable-node? node)

(and (flow-graph-node? node)
(eq? (flow-graph-node-action node) flow-graph-mutable-node-action)))

145
(define (flow-graph-mutable-node-set! node new-output)

(assert (eq? (flow-graph-node-action node) flow-graph-mutable-node-action))
(node-output-set! node new-output))

150 ;; ;;;;;;;;;;;;;;
;; Join Node
;; ;;;;;;;;;;;;;;
(define-syntax make-flow-graph-join-node

(lambda (stx)
155 (syntax-case stx ()

[(_ graph info eqv? function arguments ...)
(with-syntax ([(fun args ...)

(generate-temporaries #’(function arguments ...))])
#’(let ([g graph]

160 [fun function]
[args arguments] ...)

(assert (eq? g (flow-graph-node-graph args))) ...
(let ([inner-node #f] ;; dummy value

[key (cons #f ’())]) ;; dummy value

173

B. Source Code

165 (let ([action
(lambda (node)

(let ([new-inner (fun (flow-graph-node-output args) ...)])
;; (assert (eq? graph (flow-graph-node-graph inner-node)))
(when (not (eq? inner-node new-inner))

170 (remove-from-join-listeners! key)
(set! inner-node new-inner)
(set! key (add-to-join-listeners! new-inner node)))

(flow-graph-node-output inner-node)))])
(let ([node (make-flow-graph-node graph info

175 #f #f ;; dummy values
action)])

(add-to-listeners! args node) ...
(let ([output (action node)])

(assert (eqv? output output)) ;; ensure dummy values skipped
180 (flow-graph-node-eqv ?-set! node eqv?) ;; fix dummy value

(flow-graph-node-output-set! node output)) ;; fix dummy value
node)))))])))

;; ;;;;;;;;;;;;;;
185 ;; Printing

;; ;;;;;;;;;;;;;;
;; (printer :
;; (contain : string * list of flow-graph-node * list of obj -> void) *
;; (node : obj) -> void) *

190 ;; (labeler : flow-graph-node -> string) *
;; obj -> void

(define (flow-graph-print container node-label node)
;; for indentation

195 (define depth 0)
(define (indent)

(let loop ([i depth]) (unless (zero? i) (display "␣␣") (loop (- i 1)))))

;; for labeling nodes
200 (define node-table (make-eq-hashtable))

(define (node-table-add-node! node)
(assert (not (hashtable-contains? node-table node)))
(hashtable-set! node-table node (cons containers (hashtable-size node-table))))

(define (node-id node)
205 (cdr (or (hashtable-ref node-table node #f)

(assertion-violation ’node-id "node␣doesn ’t␣exist" node))))
(define (node-cluster node)

(car (or (hashtable-ref node-table node #f)
(assertion-violation ’node-container "node␣doesn ’t␣exist" node))))

210 (define (node-name node) (string-append "node" (number->string (node-id node))))

(define containers 0) ;; for labeling clusters

;; for printing missing edges
215 (define node-container-table (make-eq-hashtable))

(define (escape-label x) (string-append "\"" x "\""))
(define edges ’())

220 (define (print-containment label nodes children)
(indent)(display "subgraph␣cluster")(display containers)(display "␣{\n")
(set! depth (+ depth 1))
(set! containers (+ containers 1))

174

B. Source Code

(indent)(display "label␣=␣")(display (escape-label label))(display ";\n")
225 (for-each (lambda (child) (container print-containment child)) children)

(for-each (lambda (x) (print-node x #t)) nodes)
(set! depth (- depth 1))
(indent)(display "}\n"))

230 (define (print-node node first-pass)
(assert (flow-graph-node? node))
(node-table-add-node! node)
(when (and first-pass #t #;(flow-graph-lazy-node ? node))

(set! edges
235 (append (map (lambda (x) (cons node x))

(filter (lambda (x) (not (pair? x)))
(flow-graph-node-listeners node)))

edges)))
(indent)

240 (unless first-pass
(display "subgraph␣cluster")(display (node-cluster node))(display "{␣"))

(display (node-name node))
(display "␣[")
(display "label␣=␣")(display (escape-label (node-label node)))

245 (display ",␣shape␣=␣")
(display "ellipse")
#;(cond

[(flow-graph-mutable-node? node) (display "diamond")]
[(flow-graph-lazy-node? node) (display "ellipse")])

250 (when (flow-graph-node-pending node)
(display ",␣penwidth␣=␣4"))

(unless first-pass (display ",␣style=dotted"))
(display "];")
(unless first-pass (display "}"))

255 (display "\n"))

(display "digraph␣graph0␣{\n")
(container print-containment node)
(for-each (lambda (edge)

260 (define from (car edge))
(define to (cdr edge))
(unless (hashtable-contains? node-table from) (print-node from #f))
(display (node-name from))(display "␣->␣")
(display (node-name to))(display ";\n"))

265 edges)
(display "}\n"))

;; ;;;;;;;;;;;;;;
;; Private Functions

270 ;; ;;;;;;;;;;;;;;

(define dummy-pair (cons #f #f))
(define (node-output-set! node new-output)

(let ([old-output (flow-graph-node-output node)])
275 (when (not ((flow-graph-node-eqv? node) old-output new-output))

#;(flow-graph-node-outputs-set !
node (cons old-output (flow-graph-node-outputs node)))

(flow-graph-node-output-set! node new-output)
(let loop ([list (flow-graph-node-listeners node)]

280 [prev dummy-pair]) ;; just to get the loop started
(if (null? list)

(values)

175

B. Source Code

(let ([x (car list)]
[rest (cdr list)])

285 (if (not (pair? x))
(add-to-pending! x)
(let ([car-x (car x)])

(if car-x
(add-to-pending! car-x)

290 (set-cdr! prev rest))))
(loop rest list))))

(set-cdr! dummy-pair #f))))

(define (add-to-pending! node)
295 (assert (not (eq? (flow-graph-node-action node) flow-graph-mutable-node-action)))

(flow-graph-node-pending-set! node #t)
(flow-graph-pending-add! (flow-graph-node-graph node) node))

(define (add-to-listeners! node listener)
300 (flow-graph-node-listeners-set!

node (cons listener (flow-graph-node-listeners node))))

(define (add-to-join-listeners! node listener)
(let ([key (list listener)])

305 (add-to-listeners! node key)
key))

(define (remove-from-join-listeners! key)
(set-car! key #f))

310
(record-writer (record-type-descriptor flow-graph-node)

(lambda (r p wr)
(display "#[node␣" p)
(display (flow-graph-node-info r) p)

315 (display "␣" p)
(display (flow-graph-node-output r) p)
(display "]" p)))

)� �
Listing B.17: ast-flow-graphs.ss� �

(library (ast-flow-graphs)
(export
with-AST-flow-graph
AST-flow-graph ;; TODO : restrict this interface

5 make-AST-node
AST-flow-graph-print

#|
;; DEBUG ONLY
with-local-Formal-in-type

10 with-local-Formal-out-bitype
Formal-in-type-set!
Formal-out-bitype-set!

|#
)

15 (import (except (rnrs) case cond if) (safe-forms) (srfi-39) (flow-graphs)
(ast) (idents) (types) (bitypes))

176

B. Source Code

;; make-AST- * versions expect nodes as argument
;; AST-> * versions expect ASTs as argument

20
#|
;; DEBUG ONLY (nodes)
(define-hashtable-parameter with-local-Formal-in-type

Formal-in-type Formal-in-type-set !)
25 (define-hashtable-parameter with-local-Formal-out-bitype

Formal-out-bitype Formal-out-bitype-set !)
|#

(define AST-flow-graph-parameter (make-parameter #f))
30 (define (AST-flow-graph) (AST-flow-graph-parameter))

(define-syntax with-AST-flow-graph
(syntax-rules ()

[(_ graph expr0 expr* ...)
35 (parameterize ([AST-flow-graph-parameter graph]) expr0 expr* ...)]))

(define-syntax make-AST-node
(syntax-rules ()

[(_ ast make arguments ...)
40 (let ([ast-var ast])

(assert (or (AST? ast-var) (case-lambda-clause? ast-var)))
(let ([node (make (AST-flow-graph) arguments ...)])

(AST-contained-nodes-add! ast-var node)
node))]))

45
(define (AST-contained-nodes-add! ast node)

(cond
[(AST? ast)
(AST-contained-nodes-set! ast (cons node (AST-contained-nodes ast)))]

50 [(case-lambda-clause? ast)
(case-lambda-clause-contained-nodes-set!
ast (cons node (case-lambda-clause-contained-nodes ast)))]))

(define (AST-flow-graph-print ast)
55 (define (obj->string obj)

(call-with-string-output-port (lambda (port) (write obj port))))

(define (ident->string ident)
(string-append "[" (obj->string (ident-name ident))

60 "␣" (obj->string (ident-number ident))
"␣" (obj->string (ident-assigned ident)) "]"))

;; contain : string * list of node * list of ast
(define (printer contain ast)

65 (cond
[(case-lambda-clause? ast)
(contain
(string-append
"(Clause␣"

70 (let ([formals (vector->list (case-lambda-clause-formals ast))])
(string-append
"("
(apply string-append (map ident->string formals))

;; ";"
75 ;; (apply string-append

;; (map obj->string

177

B. Source Code

;; (map flow-graph-node-output
;; (map Formal-in-type formals (map (lambda (x) #f)
;; formals)))))

80 ;; ";"
;; (apply string-append
;; (map obj->string
;; (map flow-graph-node-output
;; (map Formal-out-bitype formals (map (lambda (x) #f)

85 ;; formals)))))
")"))

(let ([rest (case-lambda-clause-rest ast)])
(if rest (ident->string rest) "#f"))

")")
90 (case-lambda-clause-contained-nodes ast)

(list (case-lambda-clause-body ast)))]
[else
(contain
(string-append

95 (AST-case ast
[(Ref var) (string-append "(Ref␣" (ident->string var) ")")]
[(Quote obj) (string-append "(Quote␣" (obj->string obj) ")")]
[(Primref safe name) (string-append "(Primref␣" (if safe "#t" "#f")

"␣" (symbol->string name) ")")]
100 [(Set var body) (string-append "(Set␣" (ident->string var) ")")]

[(App fun args) "(App)"]
[(If test conseq altern) "(If)"]
[(CaseLambda table clauses) (string-append "(CaseLambda␣"

(obj->string table) ")")]
105 [(Seq e1 e2) "(Seq)"]

[(Letrec bindings body)
(string-append
"(Letrec␣"
(apply string-append (vector->list

110 (vector-map
ident->string (vector-map

letrec-binding-lhs bindings))))
")")])

":"
115 (obj->string (flow-graph-node-output (AST-output-node ast))))

(AST-contained-nodes ast)
(AST-case ast

[(Ref var) ’()]
[(Quote obj) ’()]

120 [(Primref safe name) ’()]
[(Set var body) (list body)]
[(App fun args) (cons fun (vector->list args))]
[(If test conseq altern) (list test conseq altern)]
[(CaseLambda table clauses) (vector->list clauses)]

125 [(Seq e1 e2) (list e1 e2)]
[(Letrec bindings body)
(append (map letrec-binding-rhs (vector->list bindings)) (list body))]))])

)

(define (labeler node)
130 (string-append

(flow-graph-node-info node) ":" (obj->string (flow-graph-node-output node))))
(flow-graph-print printer labeler ast))

)� �
178

B. Source Code

B.3.3. Types

Listing B.18: types.ss� �
(library (types)

(export
select-CFA
type? ;; obj -> bool

5 type =? ;; type * type -> bool
type <=? ;; type * type -> bool (true if the type is = or at a lower point on the

lattice)
proc-type-bits =? ;; list-of type * list-of type -> bool (true if the first and

second set of procs contain the same information)

;; non-proc type bits (fixnum)
10 non-proc-type-bits

other-type-bits
false-type-bits
true-type-bits
pair-or-null-type-bits

15 null-type-bits
pair-type-bits
symbol-type-bits
boolean-type-bits
number-type-bits

20 fxnum-type-bits
flonum-type-bits
other-number-type-bits
exact-integer-type-bits
fxzero-type-bits

25 bignum-type-bits
length-type-bits
vector-type-bits
string-type-bits
char-type-bits

30
;; proc-type-bits
type-procs ;; type -> proc-type-bits
make-proc-type
make-proc-record

35 proc-type-bits-case
bot-proc-type-bits ;; void -> proc-type-bits
top-proc-type-bits ;; void -> proc-type-bits
one-or-more-proc-type-bits ;; proc-type -> proc-type-bits

40 ;; proc-record
proc-record->type ;; proc-record -> type
proc-record-input-called-proc ;; proc-record -> ???
proc-record-input-argument-proc ;; proc-record -> ???
proc-record-output-return-proc ;; proc-record -> ???

45 proc-record-output-argument-proc ;; proc-record -> ???

;; top/ bot related types
top-type ;; type
bot-type ;; type

50 bot-type? ;; type -> bool
non-bot-type? ;; type -> bool

179

B. Source Code

;; type predicates and constants
proc-type ;; type

55 true-type true-type? ;; type , type->bool
false-type false-type? ;; type , type->bool
pair-type? null-type? ;; type , type->bool

;; type operators (type * type -> type)
60 type-union

type-intersect

maybe-non-proc-type->type
not-type

65 type-of
mark-escaped-type!
type-filter
)

(import (except (rnrs) case cond if) (safe-forms) (records-io) (datatype)
70 (only (chezscheme) void bignum ?))

;; Choose to use 0CFA or Sub-0CFA at compile-time and avoid run-time dispatch
(define-syntax select-CFA

(syntax-rules (zero-CFA sub-zero-CFA)
75 [(_ [(zero-CFA) zcfa zcfa* ...] [(sub-zero-CFA) sub-zcfa sub-zcfa* ...])

(begin sub-zcfa sub-zcfa* ...)] ;; change to sub-zcfa to choose sub-zero CFA
[(_ [(sub-zero-CFA) sub-zcfa sub-zcfa* ...] [(zero-CFA) zcfa zcfa* ...])
(begin sub-zcfa sub-zcfa* ...)])) ;; change to sub-zcfa to choose sub-zero CFA

80 ;; Full types
(define-record-type type (fields non-proc procs)

(nongenerative)
(protocol
(lambda (make)

85 (lambda (non-proc procs)
(assert (fixnum? non-proc))
(assert (proc-type-bits? procs))
(make non-proc procs)))))

90 (define (type =? x y)
(and (= (type-non-proc x) (type-non-proc y))

(proc-type-bits =? (type-procs x) (type-procs y))))

(define (type <=? x y)
95 (or (type =? x y) (type =? x (type-intersect x y))))

;; Non-proc types
(define-syntax flatten-mask-bits ;; (a b (c d e)) -> (bitwise-ior a b c d e)

(syntax-rules ()
100 [(_ (arg sub-args ...) args ...)

(bitwise-ior arg (flatten-mask-bits args ...))]
[(_ arg args ...)
(bitwise-ior arg (flatten-mask-bits args ...))]

[(_) 0]))
105

(define-syntax define-mask-bits
(syntax-rules ()

[(_ offset (arg sub-args ...) args ...)
(begin

110 (define-mask-bits offset sub-args ... args ...)

180

B. Source Code

(define arg (flatten-mask-bits sub-args ...)))]
[(_ offset arg) (define arg (bitwise-arithmetic-shift 1 offset))]
[(_ offset arg args ...)
(begin

115 (define arg (bitwise-arithmetic-shift 1 offset))
(define-mask-bits (+ 1 offset) args ...))]))

(define-mask-bits 0
(non-proc-type-bits

120
;; Singleton types
(false-non-proc-type-bits
false-type-bits)

125 (true-non-proc-type-bits
other-type-bits ;; handles types not listed here (e.g. unspecified type)
true-type-bits

;; Container types
130 (pair-or-null-type-bits

null-type-bits ;; not exactly a container type , but pair-or-null-type is.
pair-type-bits)

vector-type-bits

135 ;; Atomic types
string-type-bits
char-type-bits
symbol-type-bits ;; TODO : property lists
(number-type-bits

140 (other-number-type-bits
flonum-type-bits)

(exact-integer-type-bits
(bignum-type-bits
neg-bignum-type-bits

145 pos-bignum-type-bits)
(fxnum-type-bits
min-fxnum-type-bits
neg-index-type-bits
neg-one-type-bits

150 (length-type-bits
fxzero-type-bits
one-type-bits
index-type-bits
max-fxnum-type-bits)))))))

155
(define boolean-type-bits (bitwise-ior true-type-bits false-type-bits))

;; Proc types

160 ;; For type that hasn ’t yet been discovered to be proc .
(define-syntax bot-proc-type-bits

(select-CFA
[(zero-CFA) (syntax-rules () [(_) ’()])]
[(sub-zero-CFA) (syntax-rules () [(_) #f])]))

165
;; For procedure that has been discovered to be the union of two
;; different procs .
(define-syntax top-proc-type-bits

(select-CFA

181

B. Source Code

170 [(zero-CFA) (syntax-rules () [(_) (list #t)])]
[(sub-zero-CFA) (syntax-rules () [(_) #t])]))

;; Other proc types point directly to a lambda box
(define-syntax one-or-more-proc-type-bits

175 (select-CFA
[(zero-CFA) (syntax-rules () [(_ x x* ...) (list x x* ...)])]
[(sub-zero-CFA) (syntax-rules () [(_ x) x])]))

(define (proc-type-bits? x)
180 (select-CFA

[(zero-CFA) (for-all (lambda (x) (or (proc-record? x) (eq? #t x))) x)]
[(sub-zero-CFA) (or (eq? x #t) (eq? x #f) (proc-record? x))]))

(define-syntax proc-type-bits-case
185 (syntax-rules (bot-proc-type-bits top-proc-type-bits one-or-more-proc-type-bits)

[(_ proc-type-bits
[(bot-proc-type-bits) bot ...]
[(top-proc-type-bits) top ...]
[(one-or-more-proc-type-bits procs) one-or-more ...])

190 (select-CFA
[(zero-CFA)
(let ([procs proc-type-bits])

(cond
[(eq? procs ’()) bot ...]

195 [(memq #t procs) top ...]
[else one-or-more ...]))]

[(sub-zero-CFA)
(let ([procs proc-type-bits])

(cond
200 [(eq? procs #f) bot ...]

[(eq? procs #t) top ...]
[else one-or-more ...]))])]))

(define (proc-type-bits =? x y)
205 (select-CFA

[(zero-CFA)
;; ugly -- doing the quadratic check to see if two sets of procs are the same .
(let f ([x* x] [y* y] [ry* ’()] [looped? #f])

(cond
210 [(and (null? x*) (null? y*) (null? ry*)) #t]

[(or (null? x*) (and (null? y*) (null? ry*)) (and (null? y*) looped ?)) #f]
[(null? y*) (f x* ry* ’() #t)]
[(eq? (car x*) (car y*)) (f (cdr x*) (cdr y*) ry* #f)]
[else (f x* (cdr y*) (cons (car y*) ry*) looped ?)]))]

215 [(sub-zero-CFA) (eq? x y)]))

(define-record-type proc-record
(nongenerative)
(fields

220 escape-proc ;; void -> void
input-called-proc ;; arg-count * bool -> void
input-argument-proc ;; arg-count * position * type -> void
output-return-proc ;; arg-count -> flow-graph-node [type]
output-argument-proc ;; arg-count * position -> flow-graph-node [bitype]

225))

(define (make-proc-type escape
input-called input-argument

182

B. Source Code

output-return output-argument)
230 (make-type 0 (one-or-more-proc-type-bits

(make-proc-record
escape input-called input-argument
output-return output-argument))))

235 (define (proc-record->type x) (make-type 0 x))

;; Type constants and predicates
(define top-type (make-type non-proc-type-bits (top-proc-type-bits)))
(define bot-type (make-type 0 (bot-proc-type-bits)))

240 (define (bot-type? x) (assert (type? x)) (type =? bot-type x))
(define (non-bot-type? x) (assert (type? x)) (not (bot-type? x)))

(define proc-type (make-type 0 (top-proc-type-bits)))
(define true-type (make-type true-non-proc-type-bits (top-proc-type-bits)))

245 (define (true-type? x) (non-bot-type? (type-intersect x true-type)))
(define false-type (make-type false-non-proc-type-bits (bot-proc-type-bits)))
(define (false-type? x) (non-bot-type? (type-intersect x false-type)))

(define pair-type (make-type pair-type-bits (bot-proc-type-bits)))
250 (define (pair-type? x) (non-bot-type? (type-intersect x pair-type)))

(define null-type (make-type null-type-bits (bot-proc-type-bits)))
(define (null-type? x) (non-bot-type? (type-intersect x null-type)))

(define (type-intersect x y)
255 (make-type

(bitwise-and (type-non-proc x) (type-non-proc y))
(select-CFA
[(zero-CFA) (proc-type-bits-intersect (type-procs x) (type-procs y))]
[(sub-zero-CFA)

260 (proc-type-bits-case (type-procs x)
[(bot-proc-type-bits) (bot-proc-type-bits)]
[(top-proc-type-bits) (type-procs y)]
[(one-or-more-proc-type-bits proc-x)
(proc-type-bits-case (type-procs y)

265 [(bot-proc-type-bits) (bot-proc-type-bits)]
[(top-proc-type-bits) (type-procs x)]
[(one-or-more-proc-type-bits proc-y)
(if (eq? proc-x proc-y) (type-procs x) (bot-proc-type-bits))])])])))

270 (define (proc-type-bits-intersect x* y*)
(cond
[(memq #t x*) y*]
[(memq #t y*) x*]
[else (let f ([x* x*] [final* ’()])

275 (if (null? x*)
final*
(let ([x (car x*)])

(if (memq x y*)
(f (cdr x*) (cons x final*))

280 (f (cdr x*) final*)))))]))

(define (proc-type-bits-union x* y*)
(let f ([x* x*] [xy* y*])

(if (null? x*)
285 xy*

(let ([x (car x*)])
(if (memq x y*)

183

B. Source Code

(f (cdr x*) xy*)
(f (cdr x*) (cons x xy*)))))))

290
;; NOTE : may side-effect escape value of procs
(define (type-union x y)

(select-CFA
[(zero-CFA)

295 (define (mark-escaped-lambda! proc*)
(map (lambda (proc) (unless (eq? proc #t) ((proc-record-escape-proc proc))))

proc*))
(let ([proc-x* (type-procs x)] [proc-y* (type-procs y)])

(when (memq #t proc-x *) (mark-escaped-lambda! proc-y *))
300 (when (memq #t proc-y *) (mark-escaped-lambda! proc-x *)))

(make-type
(bitwise-ior (type-non-proc x) (type-non-proc y))
(proc-type-bits-union (type-procs x) (type-procs y)))]

[(sub-zero-CFA)
305 (define (mark-escaped-lambda! proc) ((proc-record-escape-proc proc)))

(make-type
(bitwise-ior (type-non-proc x) (type-non-proc y))
(proc-type-bits-case (type-procs x)

[(bot-proc-type-bits) (type-procs y)]
310 [(top-proc-type-bits)

(proc-type-bits-case (type-procs y)
[(bot-proc-type-bits) (values)]
[(top-proc-type-bits) (values)]
[(one-or-more-proc-type-bits proc-y) (mark-escaped-lambda! proc-y)])

315 (top-proc-type-bits)]
[(one-or-more-proc-type-bits proc-x)
(proc-type-bits-case (type-procs y)

[(bot-proc-type-bits) (type-procs x)]
[(top-proc-type-bits) (mark-escaped-lambda! proc-x) (top-proc-type-bits)]

320 [(one-or-more-proc-type-bits proc-y)
(if (eq? proc-x proc-y)

(type-procs x)
(begin

(mark-escaped-lambda! proc-x) ;; rather then escaping keep both
325 (mark-escaped-lambda! proc-y)

(top-proc-type-bits)))])]))]))

(define (mark-escaped-type! type)
(select-CFA

330 [(zero-CFA)
(for-each
(lambda (proc) (when (proc-record? proc) ((proc-record-escape-proc proc))))
(type-procs type))]

[(sub-zero-CFA) (type-union type top-type)])
335 (values))

(define (type-filter type true false)
(type-union
(if true (type-intersect type true-type) bot-type)

340 (if false (type-intersect type false-type) bot-type)))

;; helpers for prims
;; TODO : rename as type-complement
(define (not-type non-proc-type-bits)

345 (make-type (bitwise-not non-proc-type-bits) (top-proc-type-bits)))
;; TODO : make work for proc-type

184

B. Source Code

(define (maybe-non-proc-type->type type)
(if (type? type) type (make-type type (bot-proc-type-bits))))

350 (define (type-of x)
(make-type
(cond
[(eq? x (void)) other-type-bits]
[(eq? x #f) false-type-bits]

355 [(eq? x #t) true-type-bits]
[(eq? x ’()) null-type-bits]
[(pair? x) pair-type-bits]
[(vector? x) vector-type-bits]
[(symbol? x) symbol-type-bits]

360 [(eq? x 0) fxzero-type-bits]
[(eq? x 1) one-type-bits]
[(eq? x -1) neg-one-type-bits]
[(and (not (bignum? x)) (fixnum? x) (bignum? (+ x 1))) max-fxnum-type-bits]
[(and (not (bignum? x)) (fixnum? x) (bignum? (- x 1))) min-fxnum-type-bits]

365 [(and (fixnum? x) (positive? x)) index-type-bits]
[(and (fixnum? x) (negative? x)) neg-index-type-bits]
[(and (bignum? x) (positive? x)) pos-bignum-type-bits]
[(and (bignum? x) (negative? x)) neg-bignum-type-bits]
[(string? x) string-type-bits]

370 [(procedure? x) 0]
[(flonum? x) flonum-type-bits]
[(char? x) char-type-bits]
[else non-proc-type-bits])

(if (procedure? x) (top-proc-type-bits) (bot-proc-type-bits))))
375

(record-writer (record-type-descriptor type)
(lambda (r p wr)

(display "#<0x" p)
(display (number->string (type-non-proc r) 16) p)

380 (display ",␣" p)
(wr (proc-type-bits-case (type-procs r)

[(bot-proc-type-bits) ’bot]
[(top-proc-type-bits) ’top]
[(one-or-more-proc-type-bits proc) ’one-or-more-proc]) p)

385 (display ">" p)))

(record-writer (record-type-descriptor proc-record)
(lambda (r p wr) (display "#[proc-type]" p)))

390)� �
Listing B.19: bitypes.ss� �

(library (bitypes)
(export
make-bitype ;; type * type -> bitype
bitype? ;; obj -> bool

5 bitype =? ;; bitype * bitype -> bool
bitype-true ;; bitype -> type
bitype-false ;; bitype -> type

bitype->type ;; bitype into join of true and false
10 type->bitype ;; type into true and false

185

B. Source Code

type->bitype-true ;; type into true only
type->split-bitype ;; true values into true and false values into false

bitype->void-bitype ;; true and false go to both true and false
15 bitype-true->void-bitype ;; only true goes to true and /or false

bitype-false->void-bitype ;; only false goes to true and/or false

bitype-union ;; bitype * bitype -> bitype
bitype-intersect ;; bitype * bitype -> bitype

20)
(import (rnrs) (types) (records-io))

(define-record-type bitype
(nongenerative)

25 (fields true false)
(protocol
(lambda (make-bitype)

(lambda (true false)
(assert (type? true))

30 (assert (type? false))
(make-bitype true false)))))

(define (bitype =? x y)
(and (type =? (bitype-true x) (bitype-true y))

35 (type =? (bitype-false x) (bitype-false y))))

(define (bitype->type bitype)
(type-union (bitype-true bitype) (bitype-false bitype)))

40 (define (type->bitype type) (make-bitype type type))
(define (type->bitype-true type) (make-bitype type bot-type))

(define (type->split-bitype type)
(make-bitype (type-intersect type true-type)

45 (type-intersect type false-type)))

(define (bitype->void-bitype bitype) (type->bitype (bitype->type bitype)))

(define (bitype-true->void-bitype bitype) (type->bitype (bitype-true bitype)))
50 (define (bitype-false->void-bitype bitype) (type->bitype (bitype-false bitype)))

(define (bitype-union t1 t2)
(make-bitype (type-union (bitype-true t1) (bitype-true t2))

(type-union (bitype-false t1) (bitype-false t2))))
55

(define (bitype-intersect t1 t2)
(make-bitype (type-intersect (bitype-true t1) (bitype-true t2))

(type-intersect (bitype-false t1) (bitype-false t2))))

60 (record-writer (record-type-descriptor bitype)
(lambda (r p wr)

(display "#<" p)
(wr (bitype-true r) p)
(display "/" p)

65 (wr (bitype-false r) p)
(display ">" p)))

)� �

186

B. Source Code

Listing B.20: env-flow-functions.ss� �
(library (env-flow-functions)

(export
cond-env-flow-function ;; macro :

;; (_ ([test conseq ...]) ([test conseq] ...))
5 ;; -> env-flow-function

env-flow-function =? ;; env-flow-function * env-flow-function -> bool
env-flow-function-zero ;; env-flow-function
env-flow-function-identity ;; env-flow-function
env-flow-function-compose ;; env-flow-function *

10 ;; env-flow-function ->
;; env-flow-function (associative)

env-flow-function-apply ;; env-flow-function * bitype * type -> bitype
true false bypass ;; aux keywords
)

15 (import (rnrs) (types) (bitypes) (records-io))

(define true 0) ;; aux keyword , value doesn ’t matter
(define false 0) ;; aux keyword , value doesn ’t matter
(define bypass 0) ;; aux keyword , value doesn ’t matter

20
;; Constants for the bit level encoding
(define true-base 4)
(define false-base 0)
(define true-true-bit (+ true-base 2))

25 (define true-false-bit (+ true-base 1))
(define true-bypass-bit (+ true-base 0))
(define false-true-bit (+ false-base 2))
(define false-false-bit (+ false-base 1))
(define false-bypass-bit (+ false-base 0))

30 (define true-mask (fxior (fxarithmetic-shift 1 true-true-bit)
(fxarithmetic-shift 1 true-false-bit)
(fxarithmetic-shift 1 true-bypass-bit)))

(define false-mask (fxior (fxarithmetic-shift 1 false-true-bit)
(fxarithmetic-shift 1 false-false-bit)

35 (fxarithmetic-shift 1 false-bypass-bit)))
(define bypass-mask (fxior (fxarithmetic-shift 1 true-bypass-bit)

(fxarithmetic-shift 1 false-bypass-bit)))

(define-syntax flow-mask
40 (syntax-rules (true false bypass)

[(_ true true) (fxarithmetic-shift 1 true-true-bit)]
[(_ true false) (fxarithmetic-shift 1 true-false-bit)]
[(_ true bypass) (fxarithmetic-shift 1 true-bypass-bit)]
[(_ false true) (fxarithmetic-shift 1 false-true-bit)]

45 [(_ false false) (fxarithmetic-shift 1 false-false-bit)]
[(_ false bypass) (fxarithmetic-shift 1 false-bypass-bit)]))

(define-syntax flow-masks
(syntax-rules ()

50 [(_ _) 0]
[(_ out in) (flow-mask out in)]
[(_ out in ins ...) (fxior (flow-mask out in) (flow-masks out ins ...))]))

(define-syntax $make-env-flow-source
55 (syntax-rules ()

[(_ _) 0]

187

B. Source Code

[(_ out [test conseq]) (if test (flow-masks out conseq) 0)]
[(_ out [test conseq] . rest)
(fxior (if test (flow-masks out conseq) 0)

60 ($make-env-flow-source out . rest))]))

(define-syntax cond-env-flow-function
(syntax-rules ()

[(_ ([true-test true-conseq] ...) ([false-test false-conseq] ...))
65 (fxior

($make-env-flow-source true [true-test true-conseq] ...)
($make-env-flow-source false [false-test false-conseq] ...))]))

(define env-flow-function-zero 0)
70

(define env-flow-function-identity
(fxior (flow-mask true true) (flow-mask false false)))

;; env-flow-function * env-flow-function -> bool
75 (define (env-flow-function =? x y) (fx=? x y))

;; env-flow-function * env-flow-function -> env-flow-function
;; f * g -> (f.g)
(define (env-flow-function-compose outer inner)

80 (fxior
(fxior ;; WORKAROUND : Chez does strange allocation if we don ’t do extra fxior
(fxand
inner
(if (fxbit-set? outer true-true-bit)

85 (if (fxbit-set? outer false-false-bit)
(fxior true-mask false-mask) true-mask)

(if (fxbit-set? outer false-false-bit)
false-mask 0)))

(if (fxbit-set? outer true-false-bit)
90 (fxand true-mask (fxarithmetic-shift inner (- true-base false-base)))

0)
(if (fxbit-set? outer false-true-bit)

(fxand false-mask (fxarithmetic-shift inner (- false-base true-base)))
0))

95 (fxand bypass-mask outer)))

;; env-flow-function * bitype * type -> bitype
(define (env-flow-function-apply function bitype bypass)

(define (env-flow-source-apply source)
100 (define t1 (if (fxbit-set? source true-true-bit)

(bitype-true bitype)
bot-type))

(define t2 (if (fxbit-set? source true-false-bit)
(type-union t1 (bitype-false bitype))

105 t1))
(define t3 (if (fxbit-set? source true-bypass-bit)

(type-union t2 bypass)
t2))

t3)
110 (assert (bitype? bitype))

(assert (type? bypass))

(make-bitype
(env-flow-source-apply function)

115 (env-flow-source-apply (fxarithmetic-shift function (- true-base false-base)))))

188

B. Source Code

)� �
Listing B.21: prims.ss� �

(library (prims)
(export prim-name->type)
(import (except (rnrs) case cond if) (safe-forms) (idents) (types) (bitypes)

(syntax-helpers) (ast-flow-graphs) (flow-graphs))
5

(define (make-AST-const-node ast name const)
(make-AST-node ast make-flow-graph-mutable-node name eq? const))

(define-syntax make-prim-core
10 (lambda (stx)

(syntax-case stx ()
[(_ name [(return-true return-false)

(arg-escapes arg-true arg-false) ...
(has-rest rest-escapes rest-true rest-false)] ...)

15 (with-syntax ([(return ...)
(generate-temporaries #’(return-true ...))]

[((arg ...) ...)
(syntax-map generate-temporaries #’((arg-true ...) ...))]

[(rest ...)
20 (generate-temporaries #’(rest-true ...))]

[((formal-position ...) ...)
(syntax-map syntax-indexes #’((arg-true ...) ...))]

[(clause-arg-count ...)
(syntax-map syntax-length #’((arg-true ...) ...))]

25)
#’(cons

’name
(let ([name

(lambda (ast)
30 (define bot

(make-AST-const-node ast "no-return" bot-type))
(define bibot

(make-AST-const-node ast "no-return" (type->bitype bot-type))
)

(define return
35 (make-AST-const-node ast "return"

(type-union (maybe-non-proc-type->type return-true)
(maybe-non-proc-type->type return-false)))) ...

(define arg
(make-AST-const-node

40 ast "arg"
(make-bitype (maybe-non-proc-type->type arg-true)

(maybe-non-proc-type->type arg-false)))) ...
...

(define rest
(make-AST-const-node

45 ast "rest" (make-bitype
(maybe-non-proc-type->type rest-true)
(maybe-non-proc-type->type rest-false)))) ...

(make-proc-type
(lambda () ’()) ;; escape

50 (lambda (arg-count called) ’()) ;; input-called

189

B. Source Code

(lambda (arg-count position type) ;; input-argument
(when (or (and

((if has-rest >= =) arg-count clause-arg-count)
(or (and arg-escapes (= position formal-position)

)
55 ...

(and has-rest rest-escapes
(>= position clause-arg-count))))

...)
(mark-escaped-type! type)

60 #f)) ;; TODO : void instead of #f
(lambda (arg-count) ;; output-return

(cond
[((if has-rest >= =) arg-count clause-arg-count)
return]

65 ...
[else bot]))

(lambda (arg-count position) ;; output-argument
(cond
[((if has-rest >= =) arg-count clause-arg-count)

70 (cond
[(= position formal-position) arg]
...
[(and has-rest (>= position clause-arg-count)) rest]
[else bibot])]

75 ...
[else bibot]))))])

name)))])))

(define-syntax make-prim-rest
80 (lambda (stx)

(define (add-rest stx)
(syntax-case stx ()

[((return-true return-false) args ... (escapes true false) dots)
(syntax-ellipsis? #’dots)

85 #’((return-true return-false) args ... (#t escapes true false))]
[((return-true return-false) args ... (dots true false))
(syntax-ellipsis? #’dots)
;; Fix problem with make-top-prim
(add-rest #’((return-true return-false) args ... dots))]

90 [((return-true return-false) args ...)
#’((return-true return-false) args ... (#f #f bot-type bot-type))]))

(syntax-case stx ()
[(_ name clauses ...)
#‘(make-prim-core name #,@(syntax-map add-rest #’(clauses ...)))])))

95
(define-syntax make-prim

(syntax-rules ()
[(_ (names ...) clauses ...) (list (make-prim-rest names clauses ...) ...)]))

100 (define-syntax make-top-prim
(syntax-rules ()

[(_ (names ...) [(true-type false-type) arg-escapes ...] ...)
(make-prim (names ...)

[(true-type false-type) (arg-escapes top-type top-type) ...]
105 ...)]))

(define-syntax make-pred-prim
(syntax-rules ()

190

B. Source Code

[(_ (names ...) type)
110 (make-prim (names ...)

[(true-type-bits false-type-bits) (#f type (not-type type))])]))

;; TODO : expand arithmetic (do as wrapper around make-prim ?)
;; (may be unneeded in new design b/c proc-type is used instead of case-lambda)

115 ;; (same logic for in argument position ?)
;; NOTE : for non-smart prims argument output types are
;; the return types assuming prim has escaped
;; TODO : case for bare vs in application

120 ;; TODO : as a hashtable
(define prim-table

(append

(make-prim (foreign-procedure) [(proc-type bot-type)
125 (#f string-type-bits top-type)])

(make-prim (foreign-callable) [(other-type-bits ;; code object
bot-type)

(#t proc-type non-proc-type-bits)])
130

(make-prim (error)
[(bot-type bot-type)
(#f symbol-type-bits symbol-type-bits)
(#f string-type-bits string-type-bits)

135 (#f top-type top-type) ...])

;; TODO : escape should return the type of its argument
(make-top-prim (escape) [(top-type top-type) #t])

140 (make-prim (for-all)
[(true-type false-type-bits)
(#t proc-type proc-type)
(#f pair-or-null-type-bits pair-or-null-type-bits)
(#f pair-or-null-type-bits pair-or-null-type-bits) ...])

145
;; pair related primitives
(make-pred-prim (pair?) pair-type-bits)

;; on false return could still be a pair b/c of improper lists
150 (make-prim (list ?)

[(true-type-bits false-type-bits)
(#f pair-or-null-type-bits (not-type null-type-bits))])

(make-top-prim (cons) [(pair-type-bits bot-type) #t #t])
155

(make-top-prim (list) [(pair-type-bits bot-type) #t ...])

(make-prim (car cdr) [(true-type false-type)
(#f pair-type-bits pair-type-bits)])

160
(make-prim (for-each)

[(top-type top-type)
(#t proc-type proc-type)
(#f pair-or-null-type-bits pair-or-null-type-bits)

165 (#f pair-or-null-type-bits pair-or-null-type-bits) ...])

(make-prim (map)

191

B. Source Code

[(pair-or-null-type-bits bot-type)
(#t proc-type proc-type)

170 (#f pair-or-null-type-bits pair-or-null-type-bits)
(#f pair-or-null-type-bits pair-or-null-type-bits) ...])

(make-prim (reverse)
[(pair-or-null-type-bits bot-type)

175 (#f pair-or-null-type-bits pair-or-null-type-bits)])

(make-prim (list->vector)
[(vector-type-bits bot-type)
(#f pair-or-null-type-bits pair-or-null-type-bits)])

180
(make-prim (r6rs:number->string number->string)

[(string-type-bits bot-type)
(#f number-type-bits number-type-bits)]

[(string-type-bits bot-type)
185 (#f number-type-bits number-type-bits)

(#f fxnum-type-bits fxnum-type-bits)]
[(string-type-bits bot-type)
(#f number-type-bits number-type-bits)
(#f fxnum-type-bits fxnum-type-bits)

190 (#f fxnum-type-bits fxnum-type-bits)])

(make-prim (r6rs:string->number string->number)
[(top-type bot-type) ; maybe-number , no way to express it
(#f string-type-bits string-type-bits)]

195 [(top-type bot-type)
(#f string-type-bits string-type-bits)
(#f fxnum-type-bits fxnum-type-bits)])

(make-prim (char?)
200 [(true-type-bits false-type-bits)

(#f char-type-bits (not-type char-type-bits))])

(make-prim (put-char)
[(other-type-bits bot-type)

205 (#f other-type-bits other-type-bits)
(#f char-type-bits char-type-bits)])

(make-prim (write-char)
[(other-type-bits bot-type)

210 (#f char-type-bits char-type-bits)]
[(other-type-bits bot-type)
(#f char-type-bits char-type-bits)
(#f other-type-bits other-type-bits)])

215 (make-prim (char->integer)
[(fxnum-type-bits bot-type)
(#f char-type-bits char-type-bits)])

(make-prim (char-alphabetic? char-numeric? char-whitespace? char-upper-case?
220 char-lower-case? char-title-case ?)

[(true-type-bits false-type-bits)
(#f char-type-bits char-type-bits)])

(make-prim (char-general-category)
225 [(symbol-type-bits bot-type)

(#f char-type-bits char-type-bits)])

192

B. Source Code

(make-prim (integer->char)
[(char-type-bits bot-type)

230 (#f fxnum-type-bits fxnum-type-bits)])

(make-prim (char=? char <=? char <? char>? char> =?)
[(true-type-bits false-type-bits)
(#f char-type-bits char-type-bits)

235 (#f char-type-bits char-type-bits) ...])

(make-prim (char-upcase char-downcase char-titlecase char-foldcase)
[(char-type-bits bot-type)
(#f char-type-bits char-type-bits)])

240
(make-prim (string ?)

[(true-type-bits false-type-bits)
(#f string-type-bits (not-type string-type-bits))])

245 (make-prim (open-string-input-port)
[(other-type-bits bot-type)
(#f string-type-bits string-type-bits)])

(make-prim (list->string)
250 [(string-type-bits bot-type)

(#f pair-or-null-type-bits pair-or-null-type-bits)])

(make-prim (string->list)
[(pair-or-null-type-bits bot-type)

255 (#f string-type-bits string-type-bits)])

(make-prim (string-append)
[(string-type-bits bot-type)
(#f string-type-bits string-type-bits) ...])

260
(make-prim (string-length)

[(fxnum-type-bits bot-type)
(#f string-type-bits string-type-bits)])

265 (make-prim (string-ref)
[(char-type-bits bot-type)
(#f string-type-bits string-type-bits)
(#f fxnum-type-bits fxnum-type-bits)])

270 (make-prim (string-set !)
[(true-type bot-type)
(#f string-type-bits string-type-bits)
(#f fxnum-type-bits fxnum-type-bits)
(#f char-type-bits char-type-bits)])

275
(make-prim (string)

[(string-type-bits bot-type)
(#f char-type-bits char-type-bits) ...])

280 (make-prim (r6rs:char=? r6rs:char <=? r6rs:char <? r6rs:char>? r6rs:char> =?)
[(true-type-bits false-type-bits)
(#f char-type-bits char-type-bits)
(#f char-type-bits char-type-bits)
(#f char-type-bits char-type-bits) ...])

285

193

B. Source Code

(make-prim (r6rs:string =? r6rs:string <? r6rs:string <=? r6rs:string> =? r6rs:
string> ?)

[(true-type-bits false-type-bits)
(#f string-type-bits string-type-bits)
(#f string-type-bits string-type-bits)

290 (#f string-type-bits string-type-bits) ...])

(make-prim (string =? string <? string <=? string> =? string> ?)
[(true-type-bits false-type-bits)
(#f string-type-bits string-type-bits)

295 (#f string-type-bits string-type-bits) ...])

(make-prim (string->symbol)
[(symbol-type-bits bot-type)
(#f string-type-bits string-type-bits)])

300
(make-prim (substring)

[(string-type-bits bot-type)
(#f string-type-bits string-type-bits)
(#f fxnum-type-bits fxnum-type-bits)

305 (#f fxnum-type-bits fxnum-type-bits)])

(make-prim (string-normalize-nfd string-normalize-nfkd
string-normalize-nfc string-normalize-nfkc)

[(string-type-bits bot-type)
310 (#f string-type-bits string-type-bits)])

(make-prim (make-string)
[(string-type-bits bot-type)
(#f fxnum-type-bits fxnum-type-bits)]

315 [(string-type-bits bot-type)
(#f fxnum-type-bits fxnum-type-bits)
(#f char-type-bits char-type-bits)])

;; Can ’t use unknown-prim b/c that would escape it ’s arguments
320 ;; for Chez we my be more precise and say void instead of top-type

(make-prim (set-car! set-cdr !) [(top-type top-type)
(#f pair-type-bits pair-type-bits)
(#t top-type top-type)])

325 (make-prim (length) [(length-type-bits bot-type)
(#f pair-or-null-type-bits pair-or-null-type-bits)])

;; vector related primitives
(make-pred-prim (vector ?) vector-type-bits)

330
(make-top-prim (vector) [(vector-type-bits bot-type) #t ...])

(make-prim (vector->list)
[(pair-or-null-type-bits bot-type)

335 (#f vector-type-bits vector-type-bits)])

(make-prim (make-vector)
[(vector-type-bits bot-type) (#f length-type-bits length-type-bits)]
[(vector-type-bits bot-type) (#f length-type-bits length-type-bits)

340 (#t top-type top-type)])

(make-prim (vector-length) [(length-type-bits bot-type)
(#f vector-type-bits vector-type-bits)])

194

B. Source Code

345 (make-prim (vector-ref) [(true-type false-type)
(#f vector-type-bits vector-type-bits)
(#f length-type-bits length-type-bits)])

;; for Chez we may be more precise and say void instead of top-type
350 (make-prim (vector-set !) [(true-type bot-type)

(#f vector-type-bits vector-type-bits)
(#f length-type-bits length-type-bits)
(#t top-type top-type)])

355 ;; general integer related primitives
;;(make-pred-prim (integer ?) integer-type-bits)

(make-pred-prim (bignum ?) bignum-type-bits)

360 ;; +0.0 , +0.0i, etc . are also zero so we have to include other-type-bits
(make-pred-prim (zero?) (bitwise-ior fxzero-type-bits other-number-type-bits))
(make-prim (fxzero ?)

[(true-type-bits false-type-bits)
(#f fxzero-type-bits (bitwise-xor fxnum-type-bits fxzero-type-bits))])

365
;; fixnum related primitives
;; TODO : if/ when we " cheat " and make overflow checks explicit , these will
;; need to have a return type of integer-type-bits and we ’ll rely on the
;; check afterwards cleaning up for us.

370 (make-pred-prim (fixnum ?) fxnum-type-bits)

(make-prim (fx+ fx* fxxor)
[(fxnum-type-bits bot-type)
(#f fxnum-type-bits fxnum-type-bits) ...])

375
(make-prim (fx- fx/)

[(fxnum-type-bits bot-type)
(#f fxnum-type-bits fxnum-type-bits)]

[(fxnum-type-bits bot-type)
380 (#f fxnum-type-bits fxnum-type-bits)

(#f fxnum-type-bits fxnum-type-bits) ...])

(make-prim (fxarithmetic-shift-left fxarithmetic-shift-right fxarithmetic-shift)
[(fxnum-type-bits bot-type)

385 (#f fxnum-type-bits fxnum-type-bits)
(#f fxnum-type-bits fxnum-type-bits)]) ; TODO : add a way to indicate

sub-ufixnum

;;; TODO : defines prim boxes for usafe-fx <=, fx <, fx=, fx> , fx>= that will
;;; better embody the more specific information we ’re learning

390 ;;; from them .
; fx <=
; fx <
; fx=
; fx> =

395 ; fx>
;; TODO : why does Chez have both ’fx <’ and ’fx <?’
;; TODO : why does Chez allow only one argument but not zero arguments ?
(make-prim (fx <= fx < fx= fx>= fx>)

[(true-type-bits false-type-bits)
400 (#f fxnum-type-bits fxnum-type-bits)

(#f fxnum-type-bits fxnum-type-bits) ...])

195

B. Source Code

(make-prim (fx <? fx=? fx <=? fx>=? fx>?)
[(true-type-bits false-type-bits)

405 (#f fxnum-type-bits fxnum-type-bits)
(#f fxnum-type-bits fxnum-type-bits)
(#f fxnum-type-bits fxnum-type-bits) ...])

(make-pred-prim (flonum ?) flonum-type-bits)
410

(make-prim (fl+ fl*) [(flonum-type-bits bot-type)
(#f flonum-type-bits flonum-type-bits) ...])

(make-prim (fldiv flmod fldiv0 flmod0 flexpt)
415 [(flonum-type-bits bot-type)

(#f flonum-type-bits flonum-type-bits)
(#f flonum-type-bits flonum-type-bits)])

(make-prim (flatan fllog)
420 [(flonum-type-bits bot-type)

(#f flonum-type-bits flonum-type-bits)]
[(flonum-type-bits bot-type)
(#f flonum-type-bits flonum-type-bits)
(#f flonum-type-bits flonum-type-bits)])

425
(make-prim (flsqrt flabs flnumerator fldenominator flfloor flceiling

fltruncate flround flexp flsin flcos fltan flasin flacos)
[(flonum-type-bits bot-type)
(#f flonum-type-bits flonum-type-bits)])

430
(make-prim (fl- fl/ flmax flmin)

[(flonum-type-bits bot-type)
(#f flonum-type-bits flonum-type-bits)]

[(flonum-type-bits bot-type)
435 (#f flonum-type-bits flonum-type-bits)

(#f flonum-type-bits flonum-type-bits) ...])

(make-prim (fl>? fl <? fl>=? fl <=? fl=?)
[(true-type-bits false-type-bits)

440 (#f flonum-type-bits flonum-type-bits)
(#f flonum-type-bits flonum-type-bits)
(#f flonum-type-bits flonum-type-bits) ...])

(make-prim (flpositive? flnegative? flzero? flinteger? flodd? fleven?
445 flfinite? flinfinite? flnan ?)

[(true-type-bits false-type-bits)
(#f flonum-type-bits flonum-type-bits)])

(make-pred-prim (number ?) number-type-bits)
450

;; other type-predicate primitives
(make-pred-prim (boolean ?) boolean-type-bits)

(make-pred-prim (symbol ?) symbol-type-bits)
455

(make-pred-prim (null ?) null-type-bits)

;; TODO : can ’t use make-pred-prim b/c that is only for non-proc-type-bits
(make-prim (procedure ?)

460 [(true-type-bits false-type-bits)

196

B. Source Code

(#f proc-type non-proc-type-bits)])

;;; TODO : defines prim box for eq? that will embody the more specific
;;; information we ’re learning from eq?

465 ;;; TODO : Add to case-lambda the ability to flag it as having been used
;;; in an eq? so we need to preserve it , even if we could normally
;;; reduce it.

;; TODO : when we add ports , we ’ll need a display , and need to make
470 ;; the checks explicit for display

(make-top-prim (display)
;; for Chez we may be more precise and say void instead of top-type
[(true-type false-type) #f]
[(true-type false-type) #f #f])

475
;; if void is really unspecified , it should be top here .
(make-top-prim (void) [(other-type-bits bot-type)])

;; TODO : when we add ports , we ’ll need an read , and need to make
480 ;; the checks explicit for read

(make-top-prim (read)
;; TODO : do we need to type-intersect the return values ?
[(non-proc-type-bits non-proc-type-bits)]
[(non-proc-type-bits non-proc-type-bits) #f])

485
;; The make-bottom that always returns a bottom type
(make-top-prim (make-bottom) [(bot-type bot-type)])

(list (cons ’unknown-prim (lambda (ast) top-type))) ;; prims could be non-procs
490

))

(define (prim-name->type ast name)
(let ([prim (assq name prim-table)])

495 (if prim
((cdr prim) ast)
(prim-name->type ast ’unknown-prim))))

)� �
B.4. Auxiliary code

Listing B.22: datatype.ss� �
(library (datatype)

(export
define-datatype ;; Macro (see comment for syntax)
list-of ;; (obj -> bool) -> (obj -> bool)

5 vector-of ;; (obj -> bool) -> (obj -> bool)
improper-list-of ;; (obj -> bool) -> (obj -> bool)
)

(import (rnrs) (syntax-helpers) (records-io)

197

B. Source Code

(only (chezscheme) optimize-level void))
10

;; Disables checks at Chez Scheme optimize-level 3
(define-syntax unless-unchecked

(lambda (x)
(syntax-case x ()

15 [(_ body ...)
(if (fx=? (optimize-level) 3)

#’(void)
#’(begin body ...))])))

20 (define (list-of pred)
(lambda (x*) (and (list? x*) (for-all pred x*))))

(define (vector-of pred)
(lambda (x*) (and (vector? x*) (for-all pred (vector->list x*)))))

25
(define (improper-list-of pred)

(lambda (x*)
(or (null? x*)

(pred x*)
30 (and (pair? x*) (pred (car x*)) ((improper-list-of pred) (cdr x*))))))

(define-syntax define-case
#;(syntax-summary

(define-case name extract-tag
35 [name tag extractor extractor]

[name tag extractor extractor])

(name-case expr
[(name field field) body]

40 [(name field field) body]
[else body]))

(lambda (stx)
(syntax-case stx ()

45 [(_ case-name tag-extractor [name tag field-extractor ...] ...)
(syntax-for-all identifier? #’(name ...))
(with-syntax ([((field ...) ...)

(syntax-map generate-temporaries
#’((field-extractor ...) ...))])

50 #’(define-syntax case-name
(lambda (stx)

(define (make-clause clause)
(syntax-case clause (name ...)

[[(name field ...) expr0 expr* (... ...)]
55 #’[(tag)

(let ([field (field-extractor expr-var)] ...)
#f ;; force non-definition context like scheme ’case ’
expr0 expr* (... ...))]] ...))

(syntax-case stx (else)
60 [(_ expr

[(clause-name field-name (... ...)) body0 body* (... ...)]
(... ...))

(syntax-for-all (lambda (x) (syntax-for-all identifier? x))
#’((field-name (... ...)) (... ...)))

65 ;; TODO : check for missing clause
#’(case-name expr

[(clause-name field-name (... ...)) body0 body* (... ...)]

198

B. Source Code

(... ...)
[else (assertion-violation ’case-name "missing␣case")])]

70 [(_ expr
[(clause-name field-name (... ...)) body0 body* (... ...)]
(... ...)
[else else-body0 else-body* (... ...)])

(syntax-for-all (lambda (x) (syntax-for-all identifier? x))
75 #’((field-name (... ...)) (... ...)))

;; TODO : check for duplicate clause
#‘(let ([expr-var expr])

(case (tag-extractor expr-var)
#,@(syntax-map

80 make-clause
#’([(clause-name field-name (... ...))

body0 body* (... ...)] (... ...)))
[else else-body0 else-body* (... ...)]))]))))])))

85 (define-syntax define-datatype
#;(syntax-summary

(define-datatype (AST (property default type) (property default))
[Constor (field type) field]
[Constor field (field type)]))

90
(lambda (stx)

(define (normalize-property-spec stx)
(syntax-case stx ()

[(property default) (identifier? #’property)
95 #’(property default (lambda (x) #t))]

[(property default predicate) (identifier? #’property)
#’(property default predicate)]))

(define (normalize-field-spec stx)
(syntax-case stx ()

100 [field (identifier? #’field) #’(field (lambda (x) #t))]
[(field predicate) (identifier? #’field) #’(field predicate)]))

(syntax-case stx ()
[(_ (datatype property-spec ...)

[constructor field-spec ...] ...)
105 ;; exports :

;; datatype (record) datatype ?
;; datatype-property datatype-property-set !
;; datatype-case constructor constructor ?
(and (identifier? #’datatype) (for-all identifier? #’(constructor ...)))

110
;; expand property-spec and field-spec
(with-syntax ([((property property-default property-predicate) ...)

(syntax-map normalize-property-spec #’(property-spec ...))]
[(((field field-predicate) ...) ...)

115 (syntax-map
(lambda (x) (syntax-map normalize-field-spec x))
#’((field-spec ...) ...))])

;; public exports
120 (with-syntax ([datatype? (syntax-append #’datatype #’datatype "?")]

[datatype-case (syntax-append #’datatype #’datatype "-case")]
[(datatype-property ...)
(syntax-map
(lambda (x) (syntax-append #’datatype #’datatype "-" x))

125 #’(property ...))]
[(datatype-property-set! ...)

199

B. Source Code

(syntax-map
(lambda (x)

(syntax-append #’datatype #’datatype "-" x "-set!"))
130 #’(property ...))])

;; private identifiers
(with-syntax ([(datatype-property-unchecked-set! ...)

(syntax-map
135 (lambda (x)

(syntax-append
#’private #’datatype "-" x "-unchecked-set!"))

#’(property ...))]
[((constructor-field ...) ...)

140 (syntax-map
(lambda (constructor fields)

(syntax-map
(lambda (field)

(syntax-append #’private constructor "-" field))
145 fields))

#’(constructor ...)
#’((field ...) ...))]

[(constructor-record ...)
(syntax-map (lambda (x)

150 (syntax-append #’private x "-record"))
#’(constructor ...))]

[(constructor? ...)
(syntax-map (lambda (x) (syntax-append #’private x "?"))

#’(constructor ...))]
155 [(constructor-number ...)

(syntax-indexes #’(constructor ...))])

;; resulting code
#’(begin

160 ;; Define parent record
;; private : make-datatype and datatype-variant
(define-record-type (datatype make-datatype datatype ?)

(fields (immutable variant datatype-variant)
(mutable property datatype-property

165 datatype-property-unchecked-set !) ...)
(nongenerative)
(protocol (lambda (make)

(lambda (variant)
(make variant property-default ...)))))

170 (define (datatype-property-set! obj value)
(unless-unchecked
(unless (property-predicate value)

(assertion-violation ’datatype-property-set!
"invalid␣value" value)))

175 (datatype-property-unchecked-set! obj value))
...

;; Define child records
(define-record-type

180 (constructor-record constructor constructor ?)
(parent datatype)
(fields (immutable field constructor-field) ...)
(sealed #t)
(nongenerative)

185 (protocol

200

B. Source Code

(lambda (parent)
(lambda (field ...)

(unless-unchecked
(define who ’constructor)

190 (unless (field-predicate field)
(assertion-violation
who "invalid␣value␣for␣field" ’field field))

...)
((parent constructor-number) field ...)))))

195 ...

;; Define case form
(define-case datatype-case datatype-variant

[constructor constructor-number constructor-field ...] ...)
200

;; Define reader / writer
(define *ignored* ;; maintain definition context

(begin
(record-reader

205 ’constructor (record-type-descriptor constructor-record))
...
(record-writer (record-type-descriptor constructor-record)

(lambda (x p wr)
(wr ‘(constructor

210 ,@(map (lambda (a) (a x))
(list constructor-field ...))) p)))

...))
))))])))

)� �
Listing B.23: define-ignored.ss� �

(library (define-ignored)
(export define-ignored)
(import (rnrs))

5 (define-syntax define-ignored
(syntax-rules ()

[(_ expr)
(define *ignored* (let-values ([ignored expr]) #f))]))

10)� �
Listing B.24: iota.ss� �

(library (iota)
(export iota)
(import (rnrs))

5 ;; n -> ’(0 1 2 3 ... n-1)
(define (iota x) (reverse ($iota x)))

(define ($iota x)
(cond

10 [(zero? x) ’()]

201

B. Source Code

[else (cons (- x 1) ($iota (- x 1)))]))

)� �
Listing B.25: records-io.ss� �

(library (records-io)
(export record-writer record-reader)
(import (only (chezscheme) record-writer record-reader)))� �

Listing B.26: safe-forms.ss� �
(library (safe-forms)

(export if cond case)
(import (rename (rnrs) (if rnrs:if) (cond rnrs:cond) (case rnrs:case)))

5 ;; Versions of ’if ’, ’cond ’, and ’case ’ that are slightly safer to use :
;; ’if ’ - rejects one-armed if
;; ’cond ’ - errors if no cases match
;; ’case ’ - errors if no cases match , also allows a bare symbol
;; There are modified from R6RS - Appendix B

10
(define-syntax if

(lambda (x)
(syntax-case x ()

[(_ t c) (raise (syntax-violation ’if "found␣one-armed␣if" x))]
15 [(_ t c a) #’(rnrs:if t c a)])))

(define-syntax cond
(syntax-rules (else =>)

((cond (else result1 result2 ...))
20 (begin result1 result2 ...))

((cond (test => result))
(let ((temp test))

(if temp (result temp) (assertion-violation ’cond "no␣clauses␣match"))))
((cond (test => result) clause1 clause2 ...)

25 (let ((temp test))
(if temp

(result temp)
(cond clause1 clause2 ...))))

((cond (test)) (or test (assertion-violation ’cond "no␣clauses␣match")))
30 ((cond (test) clause1 clause2 ...)

(let ((temp test))
(if temp

temp
(cond clause1 clause2 ...))))

35 ((cond (test result1 result2 ...))
(if test (begin result1 result2 ...)

(assertion-violation ’cond "no␣clauses␣match")))
((cond (test result1 result2 ...)

clause1 clause2 ...)
40 (if test

(begin result1 result2 ...)
(cond clause1 clause2 ...)))))

202

B. Source Code

(define-syntax case
45 (syntax-rules (else)

[(case e
[s* r* r** ...]
...
[else else-r else-r* ...])

50 (let ([t e])
(cond

[(case-test t s*) r* r** ...]
...
[else else-r else-r* ...]))]

55 [(case e
[s r1 r1* ...]
[s* r2* r2** ...]
...)

(let ([t e])
60 (cond

[(case-test t s) r1 r1* ...]
[(case-test t s*) r2* r2** ...]
...
[else (assertion-violation ’case "no␣clauses␣match")]))]))

65
(define-syntax case-test

(syntax-rules ()
[(_ v (m* ...)) (memv v ’(m* ...))]
[(_ v m) (eqv? v ’m)]))

70
)� �

Listing B.27: syntax-helpers.ss� �
(library (syntax-helpers)

(export
syntax-ellipsis? ;; syntax -> bool
syntax-indexes ;; #’(a b c ...) -> # ’((1 . a) (2 . b) (3 . c) ...)

5 syntax-length ;; syntax -> int
syntax-car syntax-cdr ;; syntax -> syntax
syntax-map syntax-for-all
syntax-append)

(import (rnrs))
10

(define (syntax-ellipsis? stx)
(and (identifier? stx) (free-identifier =? stx # ’(... ...))))

(define syntax-indexes
15 (case-lambda

[(list) (syntax-indexes list 0)]
[(list base)
(syntax-case list ()

[() #’()]
20 [(x . y) (with-syntax ([base base]

[y (syntax-indexes #’y (+ base 1))])
#’(base . y))])]))

(define (syntax-length stx)
25 (syntax-case stx ()

[() 0]

203

B. Source Code

[(car . cdr) (+ 1 (syntax-length #’cdr))]))

(define (syntax-car stx) (syntax-case stx () [(car . cdr) #’car]))
30 (define (syntax-cdr stx) (syntax-case stx () [(car . cdr) #’cdr]))

(define (syntax-map function . stx)
(syntax-case stx ()

[(() ...) #’()]
35 [else

#‘(#,(apply function (map syntax-car stx)) .
#,(apply syntax-map function (map syntax-cdr stx)))]))

(define (syntax-for-all function . stx)
40 (syntax-case stx ()

[(() ...) #t]
[else
(and (apply function (map syntax-car stx))

(apply syntax-for-all function (map syntax-cdr stx)))]))
45

(define (syntax-append template-identifier . args)
(datum->syntax
template-identifier
(string->symbol

50 (apply string-append
(map (lambda (x)

(cond
[(string? x) x]
[(symbol? x) (symbol->string x)]

55 [(identifier? x) (symbol->string (syntax->datum x))]))
args)))))

)� �
B.5. Third-party Code

B.5.1. SRFI 39

The following code is based on code in Dybvig [2010] and is used by permission.

Listing B.28: srfi-39.ss� �
(library (srfi-39)

(export make-parameter parameterize)
(import (rnrs))

5 (define make-parameter
(case-lambda
[(init) (make-parameter init (lambda (x) x))]
[(init converter)

;; TODO : We simulate a parameter here . For thread safety this
10 ;; should become define-threaded which uses a threaded-parameter .

204

B. Source Code

(let ([value (converter init)])
(let ([parameter ;; give the lambda a name

(case-lambda
[() value]

15 [(new-value) (set! value (converter new-value))])])
parameter))]))

;; WARNING : converters must be idempotent
(define-syntax parameterize

20 (lambda (stx)
(syntax-case stx ()

[(_ ([lhs rhs] ...) body body* ...)
(with-syntax ([(param ...) (generate-temporaries #’(lhs ...))]

[(local ...) (generate-temporaries #’(rhs ...))])
25 #’(let ([param lhs] ...

[local rhs] ...)
(let ([swap (lambda ()

(let ([tmp (param)])
(param local)

30 (set! local tmp)) ...)])
(dynamic-wind swap (lambda () body body* ...) swap))))])))

)� �
B.5.2. Match

The following code is based on code at:

http://www.cs.indiana.edu/chezscheme/match/

The version included here has been modified and ported to be an R6RS library.

Listing B.29: match.ss� �
#! chezscheme
(library (match)

(export match)
(import (scheme))

5
;;; Copyright (c) 2000-2008 Dan Friedman , Erik Hilsdale , and Kent Dybvig
;;;
;;; Permission is hereby granted , free of charge , to any person
;;; obtaining a copy of this software and associated documentation files

10 ;;; (the " Software ") , to deal in the Software without restriction ,
;;; including without limitation the rights to use , copy , modify , merge ,
;;; publish , distribute , sublicense , and/or sell copies of the Software ,
;;; and to permit persons to whom the Software is furnished to do so ,
;;; subject to the following conditions :

15 ;;;
;;; The above copyright notice and this permission notice shall be
;;; included in all copies or substantial portions of the Software .
;;;
;;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND ,

205

http://www.cs.indiana.edu/chezscheme/match/

B. Source Code

20 ;;; EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
;;; MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND
;;; NONINFRINGEMENT . IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
;;; BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , WHETHER IN AN
;;; ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM , OUT OF OR IN

25 ;;; CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
;;; SOFTWARE .

;;; This program was originally designed and implemented by Dan Friedman .
;;; It was redesigned and reimplemented by Erik Hilsdale . Additional

30 ;;; modifications were made by Kent Dybvig , Steve Ganz , and Aziz Ghuloum .
;;; Parts of the implementation were adapted from the portable syntax-case
;;; implementation written by Kent Dybvig , Oscar Waddell , Bob Hieb , and
;;; Carl Bruggeman and is used by permission of Cadence Research Systems .

35 ;;; A change log appears at end of this file .

;;; A brief description of match is given at:

;;; http :// www.cs. indiana . edu / chezscheme / match /
40

;;; ==

;; Exp ::= (match Exp Clause)
;; || (trace-match Exp Clause)

45 ;; || (match + (Id *) Exp Clause *)
;; || (trace-match + (Id *) Exp Clause *)
;; || OtherSchemeExp

;; Clause ::= (Pat Exp +) || (Pat (guard Exp *) Exp +)
50

;; Pat ::= (Pat Pat)
;; || (Pat . Pat)
;; || ()
;; || #(Pat * Pat ... Pat *)

55 ;; || #(Pat *)
;; || ,Id
;; || ,[Id *]
;; || ,[Cata -> Id *]
;; || Id

60
;; Cata ::= Exp

;; YOU ’RE NOT ALLOWED TO REFER TO CATA VARS IN GUARDS . (reasonable !)

65 (module ((match+ match-help match-help1 clause-body let-values **
guard-body convert-pat mapper my-backquote extend-backquote
sexp-dispatch)

(trace-match+ match-help match-help1 clause-body let-values **
guard-body convert-pat mapper my-backquote extend-backquote

70 sexp-dispatch)
(match match-help match-help1 clause-body let-values **

guard-body convert-pat mapper my-backquote extend-backquote
sexp-dispatch)

(trace-match match-help match-help1 clause-body let-values **
75 guard-body convert-pat mapper my-backquote extend-backquote

sexp-dispatch)
(with-ellipsis-aware-quasiquote my-backquote)
match-equality-test)

206

B. Source Code

80 (import scheme)

(define match-equality-test
(make-parameter

equal?
85 (lambda (x)

(unless (procedure? x)
(error ’match-equality-test "~s␣is␣not␣a␣procedure" x))

x)))

90 (define-syntax match+
(lambda (x)

(syntax-case x ()
[(k (ThreadedId ...) Exp Clause ...)
#’(let f ((ThreadedId ThreadedId) ... (x Exp))

95 (match-help k f x (ThreadedId ...) Clause ...))])))

(define-syntax match
(lambda (x)

(syntax-case x ()
100 [(k Exp Clause ...)

#’(let f ((x Exp))
(match-help k f x () Clause ...))])))

(define-syntax trace-match+
105 (lambda (x)

(syntax-case x ()
[(k (ThreadedId ...) Name Exp Clause ...)
#’(letrec ((f (trace-lambda Name (ThreadedId ... x)

(match-help k f x (ThreadedId ...) Clause ...))))
110 (f ThreadedId ... x))])))

(define-syntax trace-match
(lambda (x)

(syntax-case x ()
115 [(k Name Exp Clause ...)

#’(letrec ((f (trace-lambda Name (x)
(match-help k f x () Clause ...))))

(f Exp))])))

120 ;;; ------------------------------

(define-syntax let-values **
(syntax-rules ()

((_ () B0 B ...) (begin B0 B ...))
125 ((_ ((Formals Exp) Rest ...) B0 B ...)

(let-values ** (Rest ...)
(call-with-values (lambda () Exp)

(lambda Formals B0 B ...))))))

130 (define-syntax match-help
(lambda (x)

(syntax-case x ()
((_ Template Cata Obj ThreadedIds)
#’(error ’match "Unmatched␣datum:␣~s" Obj))

135 ((_ Template Cata Obj ThreadedIds (Pat B0 B ...) Rest ...)
#’(convert-pat Pat

(match-help1 Template Cata Obj ThreadedIds

207

B. Source Code

(B0 B ...)
Rest ...)))

140 ((_ Template Cata Obj ThreadedIds cls Rest ...)
(syntax-error #’cls "invalid␣match␣clause")))))

(define-syntax match-help1
145 (lambda (x)

(syntax-case x (guard)
[(_ PatLit Vars () Cdecls Template Cata Obj ThreadedIds

((guard) B0 B ...) Rest ...)
#’(let ((ls/false (sexp-dispatch Obj PatLit)))

150 (if ls/false
(apply (lambda Vars

(clause-body Cata Cdecls ThreadedIds
(extend-backquote Template B0 B ...)))

ls/false)
155 (match-help Template Cata Obj ThreadedIds Rest ...)))]

[(_ PatLit Vars (PG ...) Cdecls Template Cata Obj ThreadedIds
((guard G ...) B0 B ...) Rest ...)

#’(let ((ls/false (sexp-dispatch Obj PatLit)))
(if (and ls/false (apply (lambda Vars

160 (guard-body Cdecls
(extend-backquote Template

(and PG ... G ...))))
ls/false))

(apply (lambda Vars
165 (clause-body Cata Cdecls ThreadedIds

(extend-backquote Template B0 B ...)))
ls/false)

(match-help Template Cata Obj ThreadedIds Rest ...)))]
[(_ PatLit Vars (PG ...) Cdecls Template Cata Obj ThreadedIds

170 (B0 B ...) Rest ...)
#’(match-help1 PatLit Vars (PG ...) Cdecls Template Cata Obj ThreadedIds

((guard) B0 B ...) Rest ...)])))

(define-syntax clause-body
175 (lambda (x)

(define build-mapper
(lambda (vars depth cata tIds)

(if (zero? depth)
cata

180 (with-syntax ((rest (build-mapper vars (- depth 1) cata tIds))
(vars vars)
(tIds tIds))

#’(mapper rest vars tIds)))))
(syntax-case x ()

185 ((_ Cata ((CVar CDepth CMyCata CFormal ...) ...) (ThreadedId ...) B)
(with-syntax (((Mapper ...)

(map (lambda (mycata formals depth)
(build-mapper formals

(syntax->datum depth)
190 (syntax-case mycata ()

[#f #’Cata]
[exp #’exp])

#’(ThreadedId ...)))
#’(CMyCata ...)

195 #’((CFormal ...) ...)
#’(CDepth ...))))

208

B. Source Code

#’(let-values ** (([ThreadedId ... CFormal ...]
(Mapper ThreadedId ... CVar))

...)
200 B))))))

(define-syntax guard-body
(lambda (x)

(syntax-case x ()
205 ((_ ((Cvar Cdepth MyCata Cformal ...) ...) B)

(with-syntax (((CF ...) (apply append #’((Cformal ...) ...))))
#’(let-syntax

((CF
(lambda (x)

210 (syntax-case x ()
(Name

(syntax-error #’Name
"guard␣cannot␣refer␣to␣return-value␣variable")))))

...)
215 B))))))

(define-syntax convert-pat
;; returns sexp-pat x vars x guards x cdecls
(let ()

220 (define ellipsis?
(lambda (x)

(and (identifier? x) (free-identifier =? x # ’(... ...)))))
(define Var?

(lambda (x)
225 (syntax-case x (->)

[-> #f]
[id (identifier? #’id)])))

(define fVar
(lambda (var vars guards)

230 (let loop ([ls vars])
(if (null? ls)

(values (cons var vars) guards)
(if (bound-identifier =? var (car ls))

(with-syntax ([(tmp) (generate-temporaries (list var))]
235 [var (car ls)])

(values (cons #’tmp vars)
(cons #’((match-equality-test) tmp var) guards)))

(loop (cdr ls)))))))
(define (f syn vars guards cdecls depth)

240 (syntax-case syn (unquote)
((unquote . stuff) ; separate for better error detection
(syntax-case syn (unquote ->)

((unquote [MyCata -> Var ...])
(andmap Var? #’(Var ...))

245 (with-syntax (((Temp) (generate-temporaries ’(x)))
(Depth depth))

(values #’any
(cons #’Temp vars)
guards

250 (cons #’[Temp Depth MyCata Var ...] cdecls))))
((unquote [Var ...])
(andmap Var? #’(Var ...))
(with-syntax (((Temp) (generate-temporaries ’(x)))

(Depth depth))
255 (values #’any

209

B. Source Code

(cons #’Temp vars)
guards
(cons #’[Temp Depth #f Var ...] cdecls))))

((unquote Var)
260 (Var? #’Var)

(let-synvalues* ([(vars guards) (fVar #’Var vars guards)])
(values #’any #’vars #’guards cdecls)))))

(((unquote . stuff) Dots)
(ellipsis? #’Dots)

265 (syntax-case syn (unquote ->)
(((unquote [MyCata -> Var ...]) Dots)
(andmap Var? #’(Var ...))
(with-syntax (((Temp) (generate-temporaries ’(x)))

(Depth+1 (add1 depth)))
270 (values #’each-any

(cons #’Temp vars)
guards
(cons #’[Temp Depth+1 MyCata Var ...] cdecls))))

(((unquote [Var ...]) Dots)
275 (andmap Var? #’(Var ...))

(with-syntax (((Temp) (generate-temporaries ’(x)))
(Depth+1 (add1 depth)))

(values #’each-any
(cons #’Temp vars)

280 guards
(cons #’[Temp Depth+1 #f Var ...] cdecls))))

(((unquote Var) Dots)
(Var? #’Var)
(let-synvalues* ([(vars guards) (fVar #’Var vars guards)])

285 (values #’each-any #’vars #’guards cdecls)))
((expr Dots) (syntax-error #’expr "match-pattern␣unquote␣syntax"))))

((Pat Dots)
(ellipsis? #’Dots)
(let-synvalues* (((Dpat Dvars Dguards Dcdecls)

290 (f #’Pat vars guards cdecls (add1 depth))))
(with-syntax ((Size (- (length #’Dvars) (length vars))))

(values #’#(each Dpat Size) #’Dvars #’Dguards #’Dcdecls))))
((Pat Dots . Rest)
(ellipsis? #’Dots)

295 (let-synvalues* (((Rpat Rvars Rguards Rcdecls)
(f #’Rest vars guards cdecls depth))

((Dpat Dvars Dguards Dcdecls)
(f #’(Pat (... ...)) #’Rvars #’Rguards #’Rcdecls

depth)))
300 (with-syntax ((Size (- (length #’Dvars) (length #’Rvars)))

((RevRestTl . RevRest) (reverseX #’Rpat ’())))
(values #’#(tail-each Dpat Size RevRest RevRestTl)

#’Dvars #’Dguards #’Dcdecls))))
((X . Y)

305 (let-synvalues* (((Ypat Yvars Yguards Ycdecls)
(f #’Y vars guards cdecls depth))

((Xpat Xvars Xguards Xcdecls)
(f #’X #’Yvars #’Yguards #’Ycdecls depth)))

(values #’(Xpat . Ypat) #’Xvars #’Xguards #’Xcdecls)))
310 (() (values #’() vars guards cdecls))

(#(X ...)
(let-synvalues* (((Pat Vars Eqvars Cdecls)

(f #’(X ...) vars guards cdecls depth)))
(values #’#(vector Pat) #’Vars #’Eqvars #’Cdecls)))

210

B. Source Code

315 (Thing (values #’#(atom Thing) vars guards cdecls))))
(define reverseX

(lambda (ls acc)
(if (pair? ls)

(reverseX (cdr ls) (cons (car ls) acc))
320 (cons ls acc))))

(define-syntax let-synvalues*
(syntax-rules ()

((_ () B0 B ...) (begin B0 B ...))
((_ (((Formal ...) Exp) Decl ...) B0 B ...)

325 (call-with-values (lambda () Exp)
(lambda (Formal ...)

(with-syntax ((Formal Formal) ...)
(let-synvalues* (Decl ...) B0 B ...)))))))

(lambda (syn)
330 (syntax-case syn ()

((_ syn (kh . kt))
(let-synvalues* (((Pat Vars Guards Cdecls) (f #’syn ’() ’() ’() 0)))

#’(kh ’Pat Vars Guards Cdecls . kt)))))))

335 (define-syntax mapper
(lambda (x)

(syntax-case x ()
((_ F (RetId ...) (ThreadId ...))
(with-syntax (((t ...) (generate-temporaries #’(RetId ...)))

340 ((ts ...) (generate-temporaries #’(RetId ...)))
((null ...) (map (lambda (x) #’’()) #’(RetId ...))))

#’(let ((fun F))
(rec g

(lambda (ThreadId ... ls)
345 (if (null? ls)

(values ThreadId ... null ...)
(call-with-values

(lambda () (g ThreadId ... (cdr ls)))
(lambda (ThreadId ... ts ...)

350 (call-with-values
(lambda () (fun ThreadId ... (car ls)))

(lambda (ThreadId ... t ...)
(values ThreadId ... (cons t ts) ...))))))))))))))

355 ;;; ------------------------------

(define-syntax my-backquote
(lambda (x)

(define ellipsis?
360 (lambda (x)

(and (identifier? x) (free-identifier =? x # ’(... ...)))))
(define-syntax with-values

(syntax-rules ()
((_ P C) (call-with-values (lambda () P) C))))

365 (define-syntax syntax-lambda
(lambda (x)

(syntax-case x ()
((_ (Pat ...) Body0 Body ...)
(with-syntax (((X ...) (generate-temporaries #’(Pat ...))))

370 #’(lambda (X ...)
(with-syntax ((Pat X) ...)

Body0 Body ...)))))))
(define-syntax with-temp

211

B. Source Code

(syntax-rules ()
375 ((_ V Body0 Body ...)

(with-syntax (((V) (generate-temporaries ’(x))))
Body0 Body ...))))

(define-syntax with-temps
(syntax-rules ()

380 ((_ (V ...) (Exp ...) Body0 Body ...)
(with-syntax (((V ...) (generate-temporaries #’(Exp ...))))

Body0 Body ...))))
(define destruct

(lambda (Orig x depth)
385 (syntax-case x (quasiquote unquote unquote-splicing)

;; inner quasiquote
((Exp dots1 dots2 . Rest)
(and (zero? depth) (ellipsis? #’dots1) (ellipsis? #’dots2))
(let f ([Exp #’(... ((Exp ...) ...))] [Rest #’Rest] [ndots 2])

390 (syntax-case Rest ()
[(dots . Rest)
(ellipsis? #’dots)
(with-syntax ([Exp Exp])

(f #’(... (Exp ...)) #’Rest (+ ndots 1)))]
395 [Rest

(with-values (destruct Orig Exp depth)
(syntax-lambda (ExpBuilder (ExpVar ...) (ExpExp ...))

(if (null? #’(ExpVar ...))
(syntax-error Orig "Bad␣ellipsis")

400 (with-values (destruct Orig #’Rest depth)
(syntax-lambda (RestBuilder RestVars RestExps)

(values
#‘(append

#,(let f ([ndots ndots])
405 (if (= ndots 1)

#’ExpBuilder
#‘(apply append #,(f (- ndots 1)))))

RestBuilder)
(append #’(ExpVar ...) #’RestVars)

410 (append #’(ExpExp ...) #’RestExps)))))))])))
((quasiquote Exp)
(with-values (destruct Orig #’Exp (add1 depth))

(syntax-lambda (Builder Vars Exps)
(if (null? #’Vars)

415 (values #’’(quasiquote Exp) ’() ’())
(values #’(list ’quasiquote Builder) #’Vars #’Exps)))))

;; unquote
((unquote Exp)
(zero? depth)

420 (with-temp X
(values #’X (list #’X) (list #’Exp))))

((unquote Exp)
(with-values (destruct Orig #’Exp (sub1 depth))

(syntax-lambda (Builder Vars Exps)
425 (if (null? #’Vars)

(values #’’(unquote Exp) ’() ’())
(values #’(list ’unquote Builder) #’Vars #’Exps)))))

;; splicing
(((unquote-splicing Exp))

430 (zero? depth)
(with-temp X

(values #’X (list #’X) (list #’Exp))))

212

B. Source Code

(((unquote-splicing Exp ...))
(zero? depth)

435 (with-temps (X ...) (Exp ...)
(values #’(append X ...) #’(X ...) #’(Exp ...))))

(((unquote-splicing Exp ...) . Rest)
(zero? depth)
(with-values (destruct Orig #’Rest depth)

440 (syntax-lambda (Builder Vars Exps)
(with-temps (X ...) (Exp ...)

(if (null? #’Vars)
(values #’(append X ... ’Rest)

#’(X ...) #’(Exp ...))
445 (values #’(append X ... Builder)

#’(X Vars) #’(Exp Exps)))))))
((unquote-splicing Exp ...)
(with-values (destruct Orig #’(Exp ...) (sub1 depth))

(syntax-lambda (Builder Vars Exps)
450 (if (null? #’Vars)

(values #’’(unquote-splicing Exp ...) ’() ’())
(values #’(cons ’unquote-splicing Builder)

#’Vars #’Exps)))))
;; dots

455 (((unquote Exp) Dots)
(and (zero? depth) (ellipsis? #’Dots))
(with-temp X

(values #’X (list #’X) (list #’Exp))))
(((unquote Exp) Dots . Rest)

460 (and (zero? depth) (ellipsis? #’Dots))
(with-values (destruct Orig #’Rest depth)

(syntax-lambda (RestBuilder RestVars RestExps)
(with-syntax ((TailExp

(if (null? #’RestVars)
465 #’’Rest

#’RestBuilder)))
(with-temp X

(values #’(append X TailExp)
(cons #’X #’RestVars)

470 (cons #’Exp #’RestExps)))))))
((Exp Dots . Rest)
(and (zero? depth) (ellipsis? #’Dots))
(with-values (destruct Orig #’Exp depth)

(syntax-lambda (ExpBuilder (ExpVar ...) (ExpExp ...))
475 (if (null? #’(ExpVar ...))

(syntax-error Orig "Bad␣ellipsis")
(with-values (destruct Orig #’Rest depth)

(syntax-lambda (RestBuilder RestVars RestExps)
(with-syntax ((TailExp

480 (if (null? #’RestVars)
#’’Rest
#’RestBuilder))

(Orig Orig))
(values #’(let f ((ExpVar ExpVar) ...)

485 (if (and (pair? ExpVar) ...)
(cons

(let ((ExpVar (car ExpVar)) ...)
ExpBuilder)

(f (cdr ExpVar) ...))
490 (if (and (null? ExpVar) ...)

TailExp

213

B. Source Code

(error ’unquote
"Mismatched␣lists␣in␣~s"
Orig))))

495 (append #’(ExpVar ...) #’RestVars)
(append #’(ExpExp ...) #’RestExps)))))))))

;; Vectors
(#(X ...)
(with-values (destruct Orig #’(X ...) depth)

500 (syntax-lambda (LsBuilder LsVars LsExps)
(values #’(list->vector LsBuilder) #’LsVars #’LsExps))))

;; random stuff
((Hd . Tl)
(with-values (destruct Orig #’Hd depth)

505 (syntax-lambda (HdBuilder HdVars HdExps)
(with-values (destruct Orig #’Tl depth)

(syntax-lambda (TlBuilder TlVars TlExps)
(with-syntax ((Hd (if (null? #’HdVars)

#’’Hd
510 #’HdBuilder))

(Tl (if (null? #’TlVars)
#’’Tl
#’TlBuilder)))

(values #’(cons Hd Tl)
515 (append #’HdVars #’TlVars)

(append #’HdExps #’TlExps))))))))
(OtherThing

(values #’’OtherThing ’() ’())))))
;; macro begins

520 (syntax-case x ()
((_ Datum)
(with-values (destruct #’(quasiquote Datum) #’Datum 0)

(syntax-lambda (Builder (Var ...) (Exp ...))
(if (null? #’(Var ...))

525 #’’Datum
#’(let ((Var Exp) ...)

Builder))))))))

(define-syntax extend-backquote
530 (lambda (x)

(syntax-case x ()
[(_ Template Exp ...)
(with-syntax ([quasiquote (datum->syntax #’Template ’quasiquote)])

#’(let-syntax ([quasiquote
535 (lambda (x)

(syntax-case x ()
((_ Foo) #’(my-backquote Foo))))])

Exp ...))])))

540 (define-syntax with-ellipsis-aware-quasiquote
(lambda (x)

(syntax-case x ()
[(k b1 b2 ...)
(with-implicit (k quasiquote)

545 #’(let-syntax ([quasiquote
(lambda (x)

(syntax-case x ()
((_ e) #’(my-backquote e))))])

(let () b1 b2 ...)))])))
550

214

B. Source Code

;;; ------------------------------

(define-syntax with-values
(syntax-rules ()

555 ((_ P C) (call-with-values (lambda () P) C))))

(define-syntax letcc
(syntax-rules ()

((_ V B0 B ...) (call/cc (lambda (V) B0 B ...)))))
560

(define classify-list
(lambda (ls)

(cond
((null? ls) ’proper)

565 ((not (pair? ls)) ’improper)
(else

(let f ((tortoise ls) (hare (cdr ls)))
(cond

((eq? tortoise hare) ’infinite)
570 ((null? hare) ’proper)

((not (pair? hare)) ’improper)
(else

(let ((hare (cdr hare)))
(cond

575 ((null? hare) ’proper)
((not (pair? hare)) ’improper)
(else (f (cdr ls) (cdr hare))))))))))))

(define ilist-copy-flat
580 (lambda (ils)

(let f ((tortoise ils) (hare (cdr ils)))
(if (eq? tortoise hare)

(list (car tortoise))
(cons (car tortoise) (f (cdr tortoise) (cddr hare)))))))

585
(define sexp-dispatch

(lambda (obj pat);; #f or list of vars
(letcc escape

(let ((fail (lambda () (escape #f))))
590 (let f ((pat pat) (obj obj) (vals ’()))

(cond
((eq? pat ’any)
(cons obj vals))

((eq? pat ’each-any)
595 ;; handle infinities

(case (classify-list obj)
((proper infinite) (cons obj vals))
((improper) (fail))))

((pair? pat)
600 (if (pair? obj)

(f (car pat) (car obj) (f (cdr pat) (cdr obj) vals))
(fail)))

((vector? pat)
(case (vector-ref pat 0)

605 ((atom)
(let ((a (vector-ref pat 1)))

(if (eqv? obj a)
vals
(fail))))

215

B. Source Code

610 ((vector)
(if (vector? obj)

(let ((vec-pat (vector-ref pat 1)))
(f vec-pat (vector->list obj) vals))

(fail)))
615 ((each)

;; if infinite , copy the list as flat , then do the matching ,
;; then do some set-cdrs .
(let ((each-pat (vector-ref pat 1))

(each-size (vector-ref pat 2)))
620 (case (classify-list obj)

((improper) (fail))
((infinite)
(let ((each-vals (f pat (ilist-copy-flat obj) ’())))

(for-each (lambda (x) (set-cdr! (last-pair x) x))
625 each-vals)

(append each-vals vals)))
((proper)
(append

(let g ((obj obj))
630 (if (null? obj)

(make-list each-size ’())
(let ((hd-vals (f each-pat (car obj) ’()))

(tl-vals (g (cdr obj))))
(map cons hd-vals tl-vals))))

635 vals)))))
((tail-each)
(let ((each-pat (vector-ref pat 1))

(each-size (vector-ref pat 2))
(revtail-pat (vector-ref pat 3))

640 (revtail-tail-pat (vector-ref pat 4)))
(when (eq? (classify-list obj) ’infinite) (fail))
(with-values

(let g ((obj obj))
;; in-tail ?, vals , revtail-left /ls

645 (cond
((pair? obj)
(with-values (g (cdr obj))

(lambda (in-tail? vals tail-left/ls)
(if in-tail?

650 (if (null? tail-left/ls)
(values #f vals (list (car obj)))
(values #t (f (car tail-left/ls)

(car obj)
vals)

655 (cdr tail-left/ls)))
(values #f vals

(cons (car obj) tail-left/ls))))))
(else

(values #t
660 (f revtail-tail-pat obj vals)

revtail-pat))))
(lambda (in-tail? vals tail-left/ls)

(if in-tail?
(if (null? tail-left/ls)

665 (append (make-list each-size ’())
vals)

(fail))
(f each-pat tail-left/ls vals))))))))

216

B. Source Code

(else
670 (if (eqv? obj pat)

vals
(fail)))))))))

))

675 #!eof

;;; examples of passing along threaded information .

;;; Try (collect-symbols ’(if (x y ’a ’c zz) ’b ’c))
680 ;;; Note that it commonizes the reference to c.

(define-syntax with-values
(syntax-rules ()

((_ P C) (call-with-values (lambda () P) C))))
685 (define collect-symbols

(lambda (exp)
(with-values (collect-symbols-help exp)

(lambda (symbol-decls exp)
(match symbol-decls

690 (((, symbol-name . ,symbol-var) ...)
‘(let ((, symbol-var (quote ,symbol-name)) ...) ,exp)))))))

(define collect-symbols-help
(lambda (exp)

(let ((symbol-env ’()))
695 (match+ (symbol-env) exp

(,x
(guard (symbol? x))
(values symbol-env x))

((quote ,x)
700 (guard (symbol? x))

(let ((pair/false (assq x symbol-env)))
(if pair/false

(values symbol-env (cdr pair/false))
(let ((v (gensym)))

705 (values (cons (cons x v) symbol-env)
v)))))

((quote ,x)
(values symbol-env ‘(quote ,x)))

((if ,[t] ,[c] ,[a])
710 (values symbol-env ‘(if ,t ,c ,a)))

((,[op] ,[arg] ...)
(values symbol-env ‘(,op ,arg ...)))))))

;;; the grammar for this one is just if-exprs and everything else
715

(define collect-leaves
(lambda (exp acc)

(match+ (acc) exp
((if ,[] ,[] ,[])

720 acc)
((,[] ,[] ...)
acc)

(,x
(cons x acc)))))

725
;; here ’s something that takes apart quoted stuff .

217

B. Source Code

(define destruct
(lambda (datum)

730 (match datum
(() ‘’())
((,[X] . ,[Y]) ‘(cons ,X ,Y))
(#(,[X] ...) ‘(vector ,X ...))
(,thing

735 (guard (symbol? thing))
‘’,thing)

(,thing
thing))))

740 ;; examples using explicit Catas

(define sumsquares
(lambda (ls)

(define square
745 (lambda (x)

(* x x)))
(match ls

[(,[a*] ...) (apply + a*)]
[,[square -> n] n])))

750
(define sumsquares

(lambda (ls)
(define square

(lambda (x)
755 (* x x)))

(let ([acc 0])
(match+ (acc) ls

[(,[] ...) acc]
[,[(lambda (acc x) (+ acc (square x))) ->] acc]))))

760
;;; The following uses explicit Catas to parse programs in the
;;; simple language defined by the grammar below

;;; <Prog> -> (program <Stmt> * <Expr>)
765 ;;; <Stmt> -> (if <Expr> <Stmt> <Stmt>)

;;; | (set! <var> <Expr>)
;;; <Expr> -> <var>
;;; | <integer>
;;; | (if <Expr> <Expr> <Expr>)

770 ;;; | (< Expr> <Expr *>)

(define parse
(lambda (x)

(define Prog
775 (lambda (x)

(match x
[(program ,[Stmt -> s*] ... ,[Expr -> e])
‘(begin ,s* ... ,e)]

[,other (error ’parse "invalid␣program␣~s" other)])))
780 (define Stmt

(lambda (x)
(match x

[(if ,[Expr -> e] ,[Stmt -> s1] ,[Stmt -> s2])
‘(if ,e ,s1 ,s2)]

785 [(set! ,v ,[Expr -> e])
(guard (symbol? v))

218

B. Source Code

‘(set! ,v ,e)]
[,other (error ’parse "invalid␣statement␣~s" other)])))

(define Expr
790 (lambda (x)

(match x
[,v (guard (symbol? v)) v]
[,n (guard (integer? n)) n]
[(if ,[e1] ,[e2] ,[e3])

795 ‘(if ,e1 ,e2 ,e3)]
[(,[rator] ,[rand*] ...) ‘(,rator ,rand* ...)]
[,other (error ’parse "invalid␣expression␣~s" other)])))

(Prog x)))
;;; (parse ’(program (set ! x 3) (+ x 4)))) => (begin (set ! x 3) (+ x 4))

800
;; CHANGELOG

;; [31 January 2010]
;; rkd replaced _ with k in the syntax-case patterns for match , match +,

805 ;; etc., since in R6RS , _ is not a pattern variable .

;; [31 January 2010]
;; rkd renamed syntax-object->datum and datum->syntax-object to their
;; R6RS names syntax->datum and datum->syntax . also replaced the

810 ;; literal-identifier =? calls with free-identifier =? calls .

;; [3 February 2008]
;; rkd modified overloaded quasiquote to handle expressions followed
;; by more than one ellipsis .

815
;; [3 February 2008]
;; aziz modified mapper to quote the inserted empty lists

;; [3 March 2007]
820 ;; aziz minor change to eagerly catch malformed clauses (e.g. a clause

;; that ’s not a list of 2 or more subforms).

;; [13 March 2002]
;; rkd added following change by Friedman and Ganz to the main source

825 ;; code thread and fixed a couple of minor problems .

;; [9 March 2002]
;; Dan Friedman and Steve Ganz added the ability to use identical pattern
;; variables . The patterns represented by the variables are compared

830 ;; using the value of the parameter match-equality-test , which defaults
;; to equal ?.
;;
;; > (match ’(1 2 1 2 1)
;; [(,a ,b ,a ,b ,a) (guard (number ? a) (number ? b)) (+ a b)])

835 ;; 3
;; ;;
;; > (match ’((1 2 3) 5 (1 2 3))
;; [((,a ...) ,b (,a ...)) ‘(,a ... ,b)])
;; (1 2 3 5)

840 ;; ;;
;; > (parameterize ([match-equality-test (lambda (x y) (equal ? x (reverse y)))])
;; (match ’((1 2 3) (3 2 1))
;; [(,a ,a) ’yes]
;; [, oops ’no]))

845 ;; yes

219

B. Source Code

;; [10 Jan 2002]
;; eh fixed bug that caused (match ’((1 2 3 4)) (((,a ... ,d) . ,x) a)) to
;; blow up. The bug was caused by a bug in the sexp-dispatch procedure

850 ;; where a base value empty list was passed to an accumulator from inside
;; the recursion , instead of passing the old value of the accumulator .

;; [14 Jan 2001]
;; rkd added syntax checks to unquote pattern parsing to weed out invalid

855 ;; patterns like ,#(a) and ,[(vector-ref d 1)].

;; [14 Jan 2001]
;; rkd added ,[Cata -> Id* ...] to allow specification of recursion
;; function . ,[Id* ...] recurs to match ; ,[Cata -> Id* ...] recurs

860 ;; to Cata .

;; [14 Jan 2001]
;; rkd tightened up checks for ellipses and nested quasiquote ; was comparing
;; symbolic names , which , as had been noted in the source , is a possible

865 ;; hygiene bug. Replaced error call in guard-body with syntax-error to
;; allow error to include source line / character information .

;; [13 Jan 2001]
;; rkd fixed match patterns of the form (stuff * ,[x] ... stuff +) , which

870 ;; had been recurring on subforms of each item rather than on the items
;; themselves .

;; [29 Feb 2000]
;; Fixed a case sensitivity bug .

875
;; [24 Feb 2000]
;; Matcher now handles vector patterns . Quasiquote also handles
;; vector patterns , but does NOT do the csv6 .2 optimization of
;; ‘#(a 1 ,(+ 3 4) x y) ==> (vector ’a 1 (+ 3 4) ’x ’y).

880 ;; Also fixed bug in (P P) matching code .

;; [23 Feb 2000]
;; KSM fixed bug in unquote-splicing inside quasiquote .

885 ;; [10 Feb 2000]
;; New forms match + and trace-match + thread arguments right-to-left .
;; The pattern (P P) now works the way you might expect .
;; Infinite lists are now properly matched (and not matched).
;; Removed the @ pattern .

890 ;; Internal : No longer converting into syntax-case .

;; [6 Feb 2000]
;; Added expansion-time error message for referring to cata variable
;; in a guard .

895
;; [4 Feb 2000]
;; Fixed backquote so it can handle nested backquote (oops).
;; Double-backquoted elipses are neutralized just as double-backquoted
;; unquotes are . So:

900 ;; ‘(a ,’(1 2 3) ... b) = eval => (a 1 2 3 b)
;; ‘‘(a ,’(1 2 3) ... b) = eval => ‘(a ,’(1 2 3) ... b)
;; ‘‘(a ,(,(1 2 3) ...) b) = eval => ‘(a ,(1 2 3) b)
;; Added support for
;; ‘((unquote-splicing x y z) b) = expand ==> (append x y z (list ’b))

220

B. Source Code

905
;; [1 Feb 2000]
;; Fixed a bug involving forgetting to quote stuff in the revised backquote .
;; Recognized unquote-splicing and signalled errors in the appropriate places .
;; Added support for deep elipses in backquote .

910 ;; Rewrote backquote so it does the rebuilding directly instead of
;; expanding into Chez ’s backquote .

;; [31 Jan 2000]
;; Kent Dybvig fixed template bug .

915
;; [31 Jan 2000]
;; Added the trace-match form , and made guards contain
;; an explicit and expression :
;; (guard E ...) ==> (guard (and E ...))

920
;; [26 Jan 2000]
;; Inside the clauses of match expressions , the following
;; transformation is performed inside backquote expressions :
;; ,v ... ==> ,@v

925 ;; (,v ,w) ... ==> ,@(map list v w)
;; etc .� �

221

Bibliography

Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew Might, Arun Chauhan,

and R. Kent Dybvig. Flow-sensitive type recovery in linear-log time. In Proceedings of

the ACM international conference on Object oriented programming systems languages

and applications, OOPSLA ’11, New York, NY, USA, October 2011. ACM. To appear.

Norman Adams, David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, and James

Philbin. ORBIT: An optimizing compiler for Scheme. In Proceedings of the 1986 SIG-

PLAN symposium on Compiler construction, SIGPLAN ’86, pages 219–233, New York,

NY, USA, 1986. ACM. ISBN 0-89791-197-0. doi: 10.1145/12276.13333.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Time and tape complexity of

pushdown automaton languages. Information and Control, 13(3):186–206, September

1968. ISSN 0019-9958. doi: 10.1016/S0019-9958(68)91087-5.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. On finding lowest common

ancestors in trees. In Proceedings of the fifth annual ACM symposium on Theory of

computing, STOC ’73, pages 253–265, New York, NY, USA, 1973. ACM. doi: 10.1145/

800125.804056.

Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality of variables

in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Prin-

222

Bibliography

ciples of programming languages, POPL ’88, pages 1–11, New York, NY, USA, 1988.

ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.73561.

Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ances-

tors: A survey and a new algorithm for a distributed environment. Theory of Computing

Systems, 37(3):441–456, May 2004. ISSN 1432-4350. doi: 10.1007/s00224-004-1155-5.

Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style. In Pro-

ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’89, pages 293–302, New York, NY, USA, 1989. ACM. ISBN 0-89791-

294-2. doi: 10.1145/75277.75303.

J. Michael Ashley and R. Kent Dybvig. A practical and flexible flow analysis for

higher-order languages. ACM Transactions on Programming Languages and Systems

(TOPLAS), 20(4):845–868, July 1998. ISSN 0164-0925. doi: 10.1145/291891.291898.

John P. Banning. An efficient way to find the side effects of procedure calls and the aliases of

variables. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, POPL ’79, pages 29–41, New York, NY, USA, 1979. ACM.

doi: 10.1145/567752.567756.

Robert Cartwright and Mike Fagan. Soft typing. In Proceedings of the ACM SIGPLAN

1991 conference on Programming language design and implementation, PLDI ’91, pages

278–292, New York, NY, USA, 1991. ACM. ISBN 0-89791-428-7. doi: 10.1145/113445.

113469.

Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In Proceedings of

the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’08, pages 159–169, New York, NY, USA, 2008. ACM. ISBN 978-1-

59593-689-9. doi: 10.1145/1328438.1328460.

223

Bibliography

William D. Clinger. Description of benchmarks, 2008. URL http://www.larcenists.

org/benchmarksAboutR6.html.

Patrick Cousot. Semantic foundations of program analysis. In Steven S. Muchnick and

Neil D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10,

pages 303–342. Prentice-Hall, 1981.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proceedings

of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM. doi: 10.1145/512950.

512973.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.

In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of pro-

gramming languages, POPL ’79, pages 269–282, New York, NY, USA, 1979. ACM. doi:

10.1145/567752.567778.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of Logic

and Computation, 2(4):511–547, August 1992. ISSN 0955-792X/1465-363X. doi: 10.

1093/logcom/2.4.511.

Patrick Cousot and Radhia Cousot. Refining model checking by abstract interpretation.

Automated Software Engineering, 6(1):69–95, January 1999. ISSN 0928-8910. doi: 10.

1023/A:1008649901864.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.

Efficiently computing static single assignment form and the control dependence graph.

ACM Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490,

October 1991. ISSN 0164-0925. doi: 10.1145/115372.115320.

224

http://www.larcenists.org/benchmarksAboutR6.html
http://www.larcenists.org/benchmarksAboutR6.html

Bibliography

Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verification in

polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference on Program-

ming language design and implementation, PLDI ’02, pages 57–68, New York, NY, USA,

2002. ACM. ISBN 1-58113-463-0. doi: 10.1145/512529.512538.

R. Kent Dybvig. Chez Scheme Version 8 User’s Guide. Cadence Research Systems, 2010.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme.

LISP and Symbolic Computation, 5(4):295–326, December 1993. ISSN 0892-4635. doi:

10.1007/BF01806308.

Marc Feeley. SRFI 39: Parameter objects, June 2003. URL http://srfi.schemers.org/

srfi-39/srfi-39.html.

Emden R. Gansner and Stephen C. North. An open graph visualization system and

its applications to software engineering. Software: Practice and Experience, 30(11):

1203–1233, 2000. ISSN 1097-024X. doi: 10.1002/1097-024X(200009)30:11<1203::

AID-SPE338>3.0.CO;2-N.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing local control and state

using flow analysis. In Gilles Barthe, editor, Programming Languages and Systems,

volume 6602 of Lecture Notes in Computer Science, pages 256–275. Springer Berlin /

Heidelberg, 2011. ISBN 978-3-642-19717-8. doi: 10.1007/978-3-642-19718-5_14.

Nevin Heintze and David McAllester. On the cubic bottleneck in subtyping and flow

analysis. Logic in Computer Science, Symposium on, page 342, 1997a. ISSN 1043-6871.

doi: 10.1109/LICS.1997.614960.

Nevin Heintze and David McAllester. On the complexity of set-based analysis. In Proceed-

ings of the second ACM SIGPLAN international conference on Functional programming,

225

http://srfi.schemers.org/srfi-39/srfi-39.html
http://srfi.schemers.org/srfi-39/srfi-39.html

Bibliography

ICFP ’97, pages 150–163, New York, NY, USA, 1997b. ACM. ISBN 0-89791-918-1. doi:

10.1145/258948.258963.

Nevin Heintze and David McAllester. Linear-time subtransitive control flow analysis. In

Proceedings of the ACM SIGPLAN 1997 conference on Programming language design

and implementation, PLDI ’97, pages 261–272, New York, NY, USA, 1997c. ACM. ISBN

0-89791-907-6. doi: 10.1145/258915.258939.

Fritz Henglein. Global tagging optimization by type inference. ACM SIGPLAN Lisp

Pointers, V(1):205–215, January 1992a. ISSN 1045-3563. doi: 10.1145/141478.141542.

Fritz Henglein. Simple closure analysis. Semantics Report D-193, DIKU, University of

Copenhagen, 1992b.

Fritz Henglein. Dynamic typing: Syntax and proof theory. Science of Computer Program-

ming, 22(3):197–230, June 1994. ISSN 0167-6423. doi: 10.1016/0167-6423(94)00004-2.

Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-

order languages. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’95, pages 393–407, New York, NY, USA,

1995. ACM. ISBN 0-89791-692-1. doi: 10.1145/199448.199536.

Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and

loving it: Must-alias analysis for higher-order languages. In Proceedings of the 25th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL

’98, pages 329–341, New York, NY, USA, 1998. ACM. ISBN 0-89791-979-3. doi: 10.

1145/268946.268973.

Simon Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In Jens

Palsberg and Zhendong Su, editors, Static Analysis, volume 5673 of Lecture Notes in

226

Bibliography

Computer Science, pages 238–255. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-

03236-3. doi: 10.1007/978-3-642-03237-0_17.

Donald E. Knuth. Semantics of context-free languages. Theory of Computing Systems, 2

(2):127–145, June 1968. ISSN 1432-4350. doi: 10.1007/BF01692511.

Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with efficient strong

updates. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’11, pages 3–16, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926389.

Thomas J. Marlowe, Barbara Ryder, and Michael Burke. Defining flow sensitivity in data

flow problems. Research Report RC 20138, IBM T. J. Watson Research Center, July

1995.

David Melski and Thomas Reps. Interconvertibility of a class of set constraints and context-

free-language reachability. Theoretical Computer Science, 248(1–2):29–98, October 2000.

ISSN 0304-3975. doi: 10.1016/S0304-3975(00)00049-9.

Jan Midtgaard and Thomas Jensen. A calculational approach to control-flow analysis by

abstract interpretation. In María Alpuente and Germán Vidal, editors, Static Analysis,

volume 5079 of Lecture Notes in Computer Science, pages 347–362. Springer Berlin /

Heidelberg, 2008. ISBN 978-3-540-69163-1. doi: 10.1007/978-3-540-69166-2_23.

Jan Midtgaard and David Van Horn. Subcubic control flow analysis algorithms. Com-

puter Science Research Report 125, Roskilde University, Roskilde, Denmark, May 2009.

Revised version to appear in Higher-Order and Symbolic Computation.

Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA: Abstract garbage

collection and counting. In Proceedings of the eleventh ACM SIGPLAN international

227

Bibliography

conference on Functional programming, ICFP ’06, pages 13–25, New York, NY, USA,

2006. ACM. ISBN 1-59593-309-3. doi: 10.1145/1159803.1159807.

Torben Æ. Mogensen. Glossary for partial evaluation and related topics. Higher-Order and

Symbolic Computation, 13(4):355–368, December 2000. ISSN 1388-3690. doi: 10.1023/A:

1026551132647.

Christian Mossin. Higher-order value flow graphs. Nordic Journal of Computing, 5(3):

214–234, September 1998. ISSN 1236-6064. URL http://dl.acm.org/citation.cfm?

id=640057.640060.

Mozilla Corporation. Doctor JS, 2011. http://doctorjs.org/.

Eugene W. Myers. Efficient applicative data types. In Proceedings of the 11th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, POPL ’84,

pages 66–75, New York, NY, USA, 1984. ACM. ISBN 0-89791-125-3. doi: 10.1145/

800017.800517.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.

Springer-Verlag, 1999.

Simon Peyton Jones, Will Partain, and André Santos. Let-floating: Moving bindings to

give faster programs. In Proceedings of the first ACM SIGPLAN international conference

on Functional programming, ICFP ’96, pages 1–12, New York, NY, USA, 1996. ACM.

ISBN 0-89791-770-7. doi: 10.1145/232627.232630.

William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications

of the ACM, 33(6):668–676, June 1990. ISSN 0001-0782. doi: 10.1145/78973.78977.

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value numbers and

redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT sympo-

228

http://dl.acm.org/citation.cfm?id=640057.640060
http://dl.acm.org/citation.cfm?id=640057.640060
http://doctorjs.org/

Bibliography

sium on Principles of programming languages, POPL ’88, pages 12–27, New York, NY,

USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.73562.

Manuel Serrano. Control flow analysis: A functional languages compilation paradigm. In

Proceedings of the 1995 ACM symposium on Applied computing, SAC ’95, pages 118–122,

New York, NY, USA, 1995. ACM. ISBN 0-89791-658-1. doi: 10.1145/315891.315934.

Olin Shivers. Control flow analysis in Scheme. In Proceedings of the ACM SIGPLAN 1988

conference on Programming Language design and Implementation, PLDI ’88, pages 164–

174, New York, NY, USA, 1988. ACM. ISBN 0-89791-269-1. doi: 10.1145/53990.54007.

Olin Shivers. Data-flow analysis and type recovery in Scheme. In Peter Lee, editor, Topics

in Advanced Language Implementations, pages 47–87. The MIT Press, 1991.

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and

Functional Programming Workshop, pages 81–92, September 2006.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten (eds.). Revised6

report on the algorithmic language Scheme, September 2007. URL http://www.r6rs.

org/.

Peter A. Steenkiste. The implementation of tags and run-time type checking. In Peter

Lee, editor, Topics in Advanced Language Implementations, pages 3–24. The MIT Press,

1991.

Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In

Proceedings of the 15th ACM SIGPLAN international conference on Functional pro-

gramming, ICFP ’10, pages 117–128, New York, NY, USA, 2010. ACM. ISBN 978-1-

60558-794-3. doi: 10.1145/1863543.1863561.

229

http://www.r6rs.org/
http://www.r6rs.org/

Bibliography

David Van Horn and Harry G. Mairson. Deciding kCFA is complete for EXPTIME. In Pro-

ceeding of the 13th ACM SIGPLAN international conference on Functional programming,

ICFP ’08, pages 275–282, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-919-7.

doi: 10.1145/1411204.1411243.

Dimitrios Vardoulakis and Olin Shivers. CFA2: A context-free approach to control-flow

analysis. In Andrew Gordon, editor, Programming Languages and Systems, volume 6012

of Lecture Notes in Computer Science, pages 570–589. Springer Berlin / Heidelberg,

2010. ISBN 978-3-642-11956-9. doi: 10.1007/978-3-642-11957-6_30.

Oscar Waddell and R. Kent Dybvig. Fast and effective procedure inlining. In Pascal

Van Hentenryck, editor, Static Analysis, volume 1302 of Lecture Notes in Computer

Science, pages 35–52. Springer Berlin / Heidelberg, 1997. ISBN 978-3-540-63468-3. doi:

10.1007/BFb0032732.

Oscar Waddell, Dipanwita Sarkar, and R. Dybvig. Fixing letrec: A faithful yet effi-

cient implementation of Scheme’s recursive binding construct. Higher-Order and Sym-

bolic Computation, 18(3):299–326, December 2005. ISSN 1388-3690. doi: 10.1007/

s10990-005-4878-3.

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional

branches. ACM Transactions on Programming Languages and Systems (TOPLAS), 13

(2):181–210, April 1991. ISSN 0164-0925. doi: 10.1145/103135.103136.

230

Index of Source Files

ast-bubbles.ss, 134

ast-flow-graphs.ss, 176

ast.ss, 167

ast-unparse.ss, 162

bitypes.ss, 185

composition-stacks.ss, 141

datatype.ss, 197

define-ignored.ss, 201

driver.ss, 124

env-flow-functions.ss, 186

env-flow-graphs.ss, 144

flow-graphs.ss, 171

idents.ss, 166

iota.ss, 201

match.ss, 205

myers-stacks.ss, 138

parse-scheme.ss, 124

prims.ss, 189

records-io.ss, 202

safe-forms.ss, 202

srfi-39.ss, 204

syntax-helpers.ss, 203

tests.ss, 130

tprogram.ss, 167

transform-let.ss, 133

tree-locations.ss, 136

type-recovery.ss, 124

types.ss, 179

value-flow-graphs.ss, 146

231

Index of Functions

$check-index, myers-stacks.ss:129

$check-length, myers-stacks.ss:131

$check-range, myers-stacks.ss:126

$iota, iota.ss:8

add-node!, value-flow-graphs.ss:371

add-rest, prims.ss:81

add-to-join-listeners!,

flow-graphs.ss:303

add-to-listeners!, flow-graphs.ss:299

add-to-pending!, flow-graphs.ss:294

alpha-equiv-clause, tests.ss:10

alpha-equiv-var?, tests.ss:7

alpha-equiv?, tests.ss:6

app-out-reachable-by-env,

value-flow-graphs.ss:893

app-out-reachable-by-value,

value-flow-graphs.ss:883

arity-match?, ast-unparse.ss:9

AST->bare-var-node,

value-flow-graphs.ss:200

AST->bool-node, value-flow-graphs.ss:86

AST->Trex, ast-unparse.ss:151

AST->type-id-node,

value-flow-graphs.ss:59

AST-bubble-vars-add!,

ast-bubbles.ss:48

AST-bubble-vars-contains?,

ast-bubbles.ss:51

AST-bubbles-intersect,

ast-bubbles.ss:8

AST-bypass-nodes,

value-flow-graphs.ss:486

AST-contained-nodes-add!,

ast-flow-graphs.ss:46

AST-flow-graph, ast-flow-graphs.ss:30

232

Index of Functions

AST-flow-graph-print,

ast-flow-graphs.ss:54

AST-output-type, ast-unparse.ss:149

AST-Ref->ident,

value-flow-graphs.ss:194

bitype->type, bitypes.ss:37

bitype->void-bitype, bitypes.ss:47

bitype-false->void-bitype,

bitypes.ss:50

bitype-intersect, bitypes.ss:56

bitype-true->void-bitype,

bitypes.ss:49

bitype-union, bitypes.ss:52

bitype=?, bitypes.ss:33

bool-node-enable!,

value-flow-graphs.ss:64

bot-type?, types.ss:240

bubble-base, ast-bubbles.ss:55

calculate-clause,

value-flow-graphs.ss:658

case-lambda-clause-ref, ast.ss:113

CaseLambdaClause->AST, ast.ss:123

check-prim, ast-unparse.ss:119

check-sig, ast-unparse.ss:116

composition-stack-cons,

composition-stacks.ss:96

composition-stack-jump,

composition-stacks.ss:82

composition-stack-range,

composition-stacks.ss:117

constant?, parse-scheme.ss:125

datatype-property-set!,

datatype.ss:170

datum?, parse-scheme.ss:128

ellipsis?, ast-unparse.ss:39

env-flow-function-apply,

env-flow-functions.ss:98

env-flow-function-compose,

env-flow-functions.ss:79

env-flow-function=?,

env-flow-functions.ss:75

env-flow-graph-force!,

env-flow-graphs.ss:99

env-flow-source-apply,

env-flow-functions.ss:99

escape-label, flow-graphs.ss:217

escape-proc, value-flow-graphs.ss:155

escape-top-level-lambda,

type-recovery.ss:7

Expr, parse-scheme.ss:160

233

Index of Functions

extend, parse-scheme.ss:142

extend-variables, parse-scheme.ss:145

false-type?, types.ss:247

find-arity, ast-unparse.ss:41

flow-graph-lazy-node-action,

flow-graphs.ss:94

flow-graph-mutable-node-action,

flow-graphs.ss:138

flow-graph-mutable-node-set!,

flow-graphs.ss:146

flow-graph-mutable-node?,

flow-graphs.ss:142

flow-graph-pending-add!,

flow-graphs.ss:53

flow-graph-pending-remove!,

flow-graphs.ss:57

flow-graph-print, flow-graphs.ss:193

flow-graph-stable?, flow-graphs.ss:68

flow-graph-step!, flow-graphs.ss:62

ident->string, ast-flow-graphs.ss:58

ident-preceding-ref-delete!,

idents.ss:34

ident<?, idents.ss:32

ident=?, idents.ss:31

ident>?, idents.ss:33

improper-list-of, datatype.ss:26

improper-list-split, ast.ss:124

improper-map, parse-scheme.ss:19

improper-memq, parse-scheme.ss:33

indent, flow-graphs.ss:196

inflate, ast-bubbles.ss:78

input-argument-proc,

value-flow-graphs.ss:169

input-called-proc,

value-flow-graphs.ss:158

intersected-node,

value-flow-graphs.ss:448

iota, iota.ss:6

key-locations<=?, tree-locations.ss:64

labeler, ast-flow-graphs.ss:129

list->composition-stack,

composition-stacks.ss:113

list->myers-stack, myers-stacks.ss:108

list-of, datatype.ss:20

lookup, parse-scheme.ss:143

make-AST-binding-node,

value-flow-graphs.ss:66

make-AST-binding-node-add!,

value-flow-graphs.ss:81

234

Index of Functions

make-AST-bitype-id-node,

value-flow-graphs.ss:56

make-AST-bubbles, ast-bubbles.ss:17

make-AST-const-node, prims.ss:6

make-AST-const-node,

value-flow-graphs.ss:47

make-AST-const-type-guard-node,

value-flow-graphs.ss:52

make-AST-enable-node,

value-flow-graphs.ss:62

make-AST-type-guard-node,

value-flow-graphs.ss:49

make-AST-var-binding-node,

value-flow-graphs.ss:69

make-case-lambda-table, ast.ss:87

make-clause, datatype.ss:52

make-composition-stack-null,

composition-stacks.ss:91

make-const-proc,

value-flow-graphs.ss:501

make-env-flow-graph,

env-flow-graphs.ss:13

make-flow-graph-lazy-node,

flow-graphs.ss:96

make-flow-graph-mutable-node,

flow-graphs.ss:140

make-out-formal,

value-flow-graphs.ss:642

make-out-return,

value-flow-graphs.ss:117

make-parameter, srfi-39.ss:5

make-proc-type, types.ss:227

make-seq, parse-scheme.ss:88

make-seq, parse-scheme.ss:94

make-uvar-ident, parse-scheme.ss:136

make-value-flow-graph,

value-flow-graphs.ss:492

map-values, ast-unparse.ss:131

mark-escaped-lambda!, types.ss:295

mark-escaped-lambda!, types.ss:305

mark-escaped-type!, types.ss:328

mark-safe?, ast-unparse.ss:7

maybe-non-proc-type->type,

types.ss:347

move-var-to-here,

value-flow-graphs.ss:466

myers-stack->list, myers-stacks.ss:111

myers-stack-car, myers-stacks.ss:74

myers-stack-car-set!,

myers-stacks.ss:72

myers-stack-cdr, myers-stacks.ss:78

myers-stack-cons, myers-stacks.ss:93

235

Index of Functions

myers-stack-drop, myers-stacks.ss:172

myers-stack-eq-suffix,

myers-stacks.ss:187

myers-stack-find, myers-stacks.ss:137

myers-stack-null?, myers-stacks.ss:90

myers-stack-pair?, myers-stacks.ss:105

myers-stack-previous,

myers-stacks.ss:180

myers-stack-previous-ref,

myers-stacks.ss:183

myers-stack-ref, myers-stacks.ss:118

myers-stack-suffix,

myers-stacks.ss:167

name, env-flow-graphs.ss:22

name, value-flow-graphs.ss:141

node-cluster, flow-graphs.ss:207

node-id, flow-graphs.ss:204

node-name, flow-graphs.ss:210

node-output-set!, flow-graphs.ss:273

node-table-add-node!,

flow-graphs.ss:201

non-bot-type?, types.ss:241

normalize-field-spec, datatype.ss:98

normalize-property-spec,

datatype.ss:92

not-type, types.ss:344

null-type?, types.ss:252

obj->string, ast-flow-graphs.ss:55

output-argument-proc,

value-flow-graphs.ss:187

output-return-proc,

value-flow-graphs.ss:182

pair-type?, types.ss:250

parallel, value-flow-graphs.ss:363

parallel-one, value-flow-graphs.ss:364

parse-scheme, parse-scheme.ss:269

parse-unsafe-scheme,

parse-scheme.ss:270

prim-name->type, prims.ss:493

print-containment, flow-graphs.ss:220

print-node, flow-graphs.ss:230

printer, ast-flow-graphs.ss:64

proc-record->type, types.ss:235

proc-type-bits-intersect,

types.ss:270

proc-type-bits-union, types.ss:282

proc-type-bits=?, types.ss:204

proc-type-bits?, types.ss:179

rec-bypass, env-flow-graphs.ss:41

rec-id, env-flow-graphs.ss:37

236

Index of Functions

rec-if-branch, env-flow-graphs.ss:53

rec-if-test, env-flow-graphs.ss:49

rec-true, value-flow-graphs.ss:544

rec-void, env-flow-graphs.ss:45

Ref->ident, parse-scheme.ss:273

remove-from-join-listeners!,

flow-graphs.ss:308

rest-return-type,

value-flow-graphs.ss:118

return-values, ast-unparse.ss:132

run, driver.ss:5

run-tests, tests.ss:174

run-type-recovery, type-recovery.ss:11

source, ast.ss:118

split-formals&rest,

value-flow-graphs.ss:102

strip-begin-seq, parse-scheme.ss:89

syntax-append, syntax-helpers.ss:46

syntax-car, syntax-helpers.ss:29

syntax-cdr, syntax-helpers.ss:30

syntax-ellipsis?, syntax-helpers.ss:11

syntax-for-all, syntax-helpers.ss:39

syntax-indexes, syntax-helpers.ss:14

syntax-length, syntax-helpers.ss:24

syntax-map, syntax-helpers.ss:32

transform-let, transform-let.ss:6

tree-location-table-next-ref,

tree-locations.ss:87

tree-location-table-prev-ref,

tree-locations.ss:80

Trex->AST, ast.ss:117

true-type?, types.ss:245

turn-var-down!,

value-flow-graphs.ss:221

turn-var-up!, value-flow-graphs.ss:212

type->bitype, bitypes.ss:40

type->bitype-true, bitypes.ss:41

type->proc-record*,

value-flow-graphs.ss:515

type->split-bitype, bitypes.ss:43

type-filter, types.ss:337

type-intersect, types.ss:254

type-match?, ast-unparse.ss:13

type-node-add!, value-flow-graphs.ss:77

type-of, types.ss:350

type-union, types.ss:292

type-with-rest-match?,

ast-unparse.ss:16

type<=?, types.ss:94

type=?, types.ss:90

types-match?, ast-unparse.ss:26

237

Index of Functions

unique-name, parse-scheme.ss:10

unique-var, parse-scheme.ss:139

unparse-scheme, parse-scheme.ss:272

uvar-maker, parse-scheme.ss:135

vector-binary-search,

tree-locations.ss:67

vector-of, datatype.ss:23

vector-set-or!, ast.ss:88

verify-var-list, parse-scheme.ss:111

wrap-var, parse-scheme.ss:138

238

Index of Macros

$make-env-flow-source,

env-flow-functions.ss:54

bot-proc-type-bits, types.ss:161

build-prim-entry, ast-unparse.ss:31

case, safe-forms.ss:44

case-test, safe-forms.ss:66

clause-body, match.ss:173

cond, safe-forms.ss:17

cond-env-flow-function,

env-flow-functions.ss:62

convert-pat, match.ss:216

define-case, datatype.ss:32

define-datatype, datatype.ss:85

define-ignored, define-ignored.ss:5

define-mask-bits, types.ss:106

define-prim-table, ast-unparse.ss:37

define-proc-fun,

value-flow-graphs.ss:138

define-rec, env-flow-graphs.ss:17

extend-backquote, match.ss:528

flatten-mask-bits, types.ss:98

flow-graph-lazy-node-force!,

flow-graphs.ss:99

flow-mask, env-flow-functions.ss:39

flow-masks, env-flow-functions.ss:48

fold-left*, value-flow-graphs.ss:262

for-each*, value-flow-graphs.ss:278

guard-body, match.ss:201

if, safe-forms.ss:11

let-synvalues*, match.ss:320

let-values**, match.ss:121

letcc, match.ss:556

list-rev, value-flow-graphs.ss:245

239

Index of Macros

make-AST-node, ast-flow-graphs.ss:37

make-flow-graph-function-node,

flow-graphs.ss:120

make-flow-graph-join-node,

flow-graphs.ss:153

make-pred-prim, prims.ss:107

make-prim, prims.ss:96

make-prim-core, prims.ss:9

make-prim-rest, prims.ss:79

make-top-prim, prims.ss:100

make-tree-location-table,

tree-locations.ss:25

map*, value-flow-graphs.ss:300

mapper, match.ss:334

match, match.ss:96

match+, match.ss:89

match-help, match.ss:129

match-help1, match.ss:143

my-backquote, match.ss:356

myers-stack-find-macro,

myers-stacks.ss:150

one-or-more-proc-type-bits,

types.ss:174

parallel*, value-flow-graphs.ss:314

parallel-intersected,

value-flow-graphs.ss:414

parallel-list, value-flow-graphs.ss:250

parallel-loop, value-flow-graphs.ss:231

parameterize, srfi-39.ss:19

proc-type-bits-case, types.ss:184

select-CFA, types.ss:73

syntax-lambda, match.ss:364

top-proc-type-bits, types.ss:168

trace-match, match.ss:111

trace-match+, match.ss:103

unless-unchecked, datatype.ss:12

with-AST-flow-graph,

ast-flow-graphs.ss:32

with-ellipsis-aware-quasiquote,

match.ss:539

with-temp, match.ss:372

with-temps, match.ss:377

with-values, match.ss:361

with-values, match.ss:552

with-values, match.ss:681

240

Index of Record Types

bitype, bitypes.ss:23

case-lambda-clause, ast.ss:72

clause-info, value-flow-graphs.ss:90

composition-stack,

composition-stacks.ss:77

down-ref, value-flow-graphs.ss:136

flow-graph, flow-graphs.ss:48

flow-graph-node, flow-graphs.ss:73

ident, idents.ss:16

letrec-binding, ast.ss:62

myers-stack, myers-stacks.ss:68

proc-record, types.ss:217

tree-location-table,

tree-locations.ss:9

Trex, tprogram.ss:10

Trex-CaseLambdaClause, tprogram.ss:7

type, types.ss:81

up-ref, value-flow-graphs.ss:135

241

Michael D. Adams
Present Address:
2001 E Lingelbach Ln./Apt. 325
Bloomington, IN 47408
+1-785-969-2431
adamsmd@indiana.edu
http://www.cs.indiana.edu/~adamsmd/

Permanent Address:
3626 SE Tomahawk Ct.
Topeka, KS 66605
+1-785-266-2778

Research Interests

Programming Languages, Compilation and Optimization, Static Analysis, Control-Flow
Analysis, Type Systems, Dependent Types, Mechanized Logic, Program Verification

Education

Indiana University Bloomington, Indiana

Doctor of Philosophy in Computer Science with a
Minor in Logic October 2011
Advisor: R. Kent Dybvig

The University of Kansas Lawrence, Kansas

Bachelor of Science in Computer Science and
Bachelor of Science in Computer Engineering with a
Minor in Mathematics May 2005

Professional Experience

Cadence Research (Dr. R. Kent Dybvig) Bloomington, Indiana

Independent Contractor May 2008 – August 2010

– Created a type recovery optimization for Chez Scheme based on control-flow analysis

– Helped update Chez Scheme to R6RS language standard

– Overhauled Chez I/O subsystem

Microsoft Research Cambridge, England

Intern April 2007 – June 2007

– Worked on Glasgow Haskell Compiler internals

– Added function call and procedure support to C- - language

http://www.cs.indiana.edu/~adamsmd/

IBM Research Hawthorne, New York

Intern January 2007 – March 2007
– Worked on X10 language

– Implemented ideas from Arcee in X10

Arcee Project (Dr. David S. Wise) Bloomington, Indiana

Graduate Research Assistant August 2005 – December 2008
– Designed techniques for faster linear algebra which forms the core of most simulations

– Doubled the speed of the research solver to be faster than other best of breed solvers

– Optimized the parallel-computing communication

JParse (Dr. Jerry James) Lawrence, Kansas

Software Engineer/Programmer June 2004 – April 2005
– Maintained a Java parser for source transforms

– Refactored the system to be multiphase to allow transforms to be more modular

Honors Undergraduate Research (Dr. Perry Alexandar) Lawrence, Kansas

Undergraduate Research Assistant August 2003 – May 2004
– Built a new embedded language for describing and checking design constraints

Veatros (Dr. John Gauch) Lawrence, Kansas

Software Engineer/Programmer May 2002 – May 2004
– Developed software for television commercial detection on remote machines

Die Kueche Café Paxico, Kansas

Independent Contractor June 2000 – July 2000
– Overhauled company web site

Western Resources Topeka, Kansas

Independent Contractor July 1998 – June 1999
– Designed and implemented a web-based weather-image display and cataloging site

Teaching Experience

Indiana University Bloomington, Indiana

Associate Instructor January 2009 – May 2011

– H212: Introduction to Software Systems, Honors: Spring 2011

– H211: Introduction to Computer Science, Honors: Fall 2010

– C343/A594: Data Structures: Fall 2009 and Spring 2010

– CSCI C212/A592: Introduction to Software Systems: Spring 2009

Undergraduate Research Opportunities in Computing January 2011 – May 2011

– Research Mentor for Christopher Zakian and Yitian Peng: Spring 2011

Honors and Awards

– Associate Instructor of the Year – Comp. Sci., Indiana University 2009 – 2010

– Paul and Virginia B. Miller Scholar – EECS, University of Kansas 2004 – 2005

– School of Engineering Honor Roll – University of Kansas Fall 2000 – Spring 2005

– Tau Beta Pi National Scholar Fall 2004

– Senior Everitt Award – EECS, University of Kansas Spring 2004

– W. Harold Otto National Merit Scholar 2000 – 2004

– May Landis Scholar – Mathematics, University of Kansas 2001 – 2002

– University Scholar Finalist (top 40 sophomores) 2001

– First Place in Archery at Sunflower State Games 1998

Recent Activities

Scheme Workshop 2011 – Program Committee 2011

http://scheme2011.ucombinator.org/

PL Wonks March 2007 – Present

http://lambda.soic.indiana.edu/

– Member of and frequent speaker at weekly, programming-languages seminar

http://scheme2011.ucombinator.org/
http://lambda.soic.indiana.edu/

Crystal Space 3D February 2005 – October 2006

http://www.crystalspace3d.org

– A core developer of this Open-Source, 3D SDK

– Coauthor of the Shared Class Facility providing reference counting and interface
querying

– Invited participant in the Crystal Space Conference 2006 in Aachen, Germany

Lambda Group June 2003 – May 2005

http://wiki.ittc.ku.edu/lambda

– Member of this readings group sponsored by Dr. Alexander

– Presented a session on fixed point combinators

Engineering Expo Chair for ACM August 2004 – April 2005

– Oversaw the development of multiple Expo projects to represent the Electrical En-
gineering and Computer Science Department

Tau Beta Pi – The Engineering Honor Society November 2002 – May 2005

– Recording secretary for 2004-2005 school year

– Delegate to the annual Regional Conference in Spring 2003 and Spring 2004.

– Delegate to the 2004 National Convention and member of the committee charged
with drafting an amendment to the Tau Beta Pi constitution addressing Computer
Science eligibility.

Honors Undergraduate Research (Dr. Perry Alexander) June 2003 – May 2004

– Developed a system for describing constraints over Abstract Syntax Trees

– Implemented first-class patterns in Haskell

Engineering Expo Project for IEEE November 2003 – February 2004

– Coordinated a project to display a game of Tic-Tac-Toe on the side of a building

– Board displayed on building using lights

– Lights are controlled by the X10 home automation technology

– Users play the game though a web based interface

http://www.crystalspace3d.org
http://wiki.ittc.ku.edu/lambda

Talks

– Linear-Log Time Control-Flow Analysis with Flow-Sensitivity and Predi-
cate-Awareness. POPL Student Presentation Session, January 27, 2011.

– Control Flow Analysis. Algorithms Reading Group, Indiana University, Septem-
ber 20, 2010.

– Scrap Your Zippers: A Generic Zipper for Heterogeneous Types. Program-
ming Languages Seminar, Indiana University, September 17, 2010.

– Control-Flow Analysis and Abstract Interpretation: Running Your Pro-
gram without Running Your Program. Programming Languages Seminar, In-
diana University, October 2, 2009.

– Deriving Syntax-Case from First Principals: How to turn a name fresh-
ener into a macro expander. Programming Languages Seminar, Indiana Univer-
sity, February 6, 2009.

– Verifying a Filesystem: A Successful Failure. (Co-speaker with Joseph Near
and Aaron Kahn.) Programming Languages Seminar, Indiana University, April 25,
2008.

– Scrapping Scrap your Nameplate. Programming Languages Seminar, Indiana
University, March 7, 2008.

– Meta-Programming in Haskell with GADTs. Programming Languages Semi-
nar, Indiana University, October 26, 2007.

– A Poet’s Musings on Efficient Computation. Programming Languages Semi-
nar, Indiana University, April 10, 2007.

– Seven at One Stroke: Results from a Cache-Oblivious Paradigm for Scal-
able Matrix Algorithms. Programming Languages Seminar, Indiana University,
October 19, 2006.

– Existential Types: How to write first class patterns in Haskell. Program-
ming Languages Seminar, Indiana University, September 7, 2006.

Publications

– Michael D. Adams, AndrewW. Keep, Jan Midtgaard, MatthewMight, Arun Chauhan,
and R. Kent Dybvig. Flow-sensitive type recovery in linear-log time. In OOP-
SLA ’11: Proceedings of the ACM international conference on Object oriented pro-
gramming systems languages and applications, New York, NY, USA, October 2011.
ACM. To appear.

– Michael D. Adams. Scrap your zippers: A generic zipper for heteroge-
neous types. In WGP ’10: Proceedings of the 2010 ACM SIGPLAN workshop
on Generic programming, pages 13–24. ACM, New York, NY, USA, 2010. doi:
10.1145/1863495.1863499.

– Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E. Byrd, and Daniel
P. Friedman. A pattern matcher for miniKanren or how to get into trouble
with CPS macros. In Scheme ’09: Proceedings of the 2009 Scheme and Functional
Programming Workshop, number CPSLO-CSC-09-03 in California Polytechnic State
University Technical Report, pages 37–45. 2009. URL http://digitalcommons.
calpoly.edu/csse_fac/83/.

– Michael D. Adams and R. Kent Dybvig. Efficient nondestructive equality check-
ing for trees and graphs. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, pages 179–188. ACM, New
York, NY, USA, 2008. doi: 10.1145/1411204.1411230.

– Peter Gottschling, David S. Wise, and Michael D. Adams. Representation-trans-
parent matrix algorithms with scalable performance. In ICS ’07: Proceedings
of the 21st annual international conference on Supercomputing, pages 116–125. ACM,
New York, NY, USA, 2007. doi: 10.1145/1274971.1274989.

– Michael D. Adams and David S. Wise. Seven at one stroke: Results from
a cache-oblivious paradigm for scalable matrix algorithms. In MSPC ’06:
Proceedings of the 2006 workshop on Memory system performance and correctness,
pages 41–50. ACM, New York, NY, USA, 2006. doi: 10.1145/1178597.1178604.

– Michael D. Adams and David S. Wise. Fast additions on masked integers.
SIGPLAN Notices, 41(5):39–45, May 2006. ISSN 0362-1340. doi: 10.1145/1149982.
1149987.

– Michael D. Adams. The representation of constraints, annotations and first
class patterns over arbitrary data types in Haskell. Honors Undergraduate
Research, University of Kansas, May 2004.

http://digitalcommons.calpoly.edu/csse_fac/83/
http://digitalcommons.calpoly.edu/csse_fac/83/

	Front Matter
	Acknowledgements
	Preface
	Abstract
	Contents
	List of Figures

	Introduction
	CFA
	CFA
	0CFA for the -calculus
	0CFA for the extended -calculus

	Flow-graph implementation of CFA
	Top and escaped functions
	Sub-0CFA
	Non-function types

	Flow Sensitivity
	Flow-sensitivity for unconditional observers
	Flow-sensitivity for conditional observers
	Flow-graph representation of flow-sensitivity

	Fast Flow Sensitivity
	Context skipping
	Context skipping and reachability
	Selecting context skips
	Caching context skips
	Algorithm Summary

	Example
	Code
	Abstract syntax tree
	Value graphs
	Context cache
	Variables
	Flow graph for x
	Flow graph for y
	Flow graph for z
	Other variables

	Result

	Implementation
	Implementation structure
	Implementation notes
	Order of evaluation
	Local binding
	Lambda
	Smart primitives
	Mutable variables

	Benchmarks
	Effectiveness
	Efficiency

	Related Work
	CFA and CFA-based type recovery
	Type recovery based on type inference
	Recent type-recovery applications
	Other related work

	Future Work
	User-defined types
	Objects and rich types
	Asymptotic improvements
	Loops and general control flow
	Static single assignment form
	Sub-kCFA
	Generalized skipping functions
	Backwards abstract interpretation

	Conclusion
	Source Code Overview
	Using the code
	Algorithm
	Preprocessing
	Flow-graph construction
	Environmental flow-graph nodes
	Value flow-graph nodes

	Post-processing

	Data types
	Trex records
	Abstract syntax trees
	Flow graphs
	AST flow graphs
	Identifiers
	Types
	Environmental flow functions

	Auxiliary code
	datatype.ss
	records-io.ss
	define-ignored.ss
	iota.ss
	safe-forms.ss
	syntax-helpers.ss

	Third-party code
	srfi-39.ss
	match.ss

	Source Code
	Software license
	Algorithm
	Preprocessing
	Graph construction
	Post-processing

	Data types
	Abstract syntax trees
	Flow graphs
	Types

	Auxiliary code
	Third-party Code
	SRFI 39
	Match

	Bibliography
	Indexes
	Index of Source Files
	Index of Functions
	Index of Macros
	Index of Record Types

	Vita

