Michael D. Adams: Research Statement

1 Research Vision

My research vision is for programmers to be able to communicate their intent to a computer (i.e., write
programs) as quickly as and at the same high level that they can communicate to other programmers and
that the resulting software artifacts would be clear enough that they obviously have no bugs instead of
having no obvious bugs.

My research areas are programming languages and software engineering, and my research is aimed
at achieving this future. As such, the thread that connects all my research is tools that enable pro-
grammers to write clear and elegant code. I view this as key to improving programmer productivity
and code comprehension and allowing programmers to more effectively design and implement programs.
These also have positive effects on other research areas. For example, better languages and tools can make
it easier to detect security vulnerabilities or prevent them in the first place, and better languages and tools
can also make programming more approachable and aid in computer-science education.

Section (2| discusses my current and future research directions, and Section (3| discusses my past
and continuing research.

2 Current and Future Work

2.1 Hazel and Structured Editing

I am currently working as a research scientist on the Hazel project [I7], which focuses on structured edit-
ing. Structured editing offers leverage on many language design and user interface problems. For example,
it can improve language discoverability and can bypass parsing and the sorts of parse errors that can
particularly frustrate new programmers. Structured editing can also improve feedback provided to
programmers by development environments. For example, in traditional IDEs, the assistance provided
by static analyses, style checkers, and type checkers is often available only when the code is syntactically
correct. However, with structured editing, not only can these tools run continuously, but they can also take
advantage of the record of edit actions performed by the user. For example, the location of the most recent
edit could inform where a type error should be reported when it could be located in multiple places.

Within Hazel, I am currently working on collaborative editing between multiple users. This
involves developing conflict-free replicated data types (CRDTs) for representing abstract syntax trees, and
I am taking an approach that will unify the problems of version control and collaborative editing.
Beyond this work, there are many directions that I plan to continue research with Hazel.

2.2 Lattice-Oriented Programming

There is a large class of algorithms that amount to finding a least fixed point on a lattice. Examples
include static analysis, parsing (both generating a parser and the act of parsing itself), and many graph
algorithms. However, most languages provide little support for these sorts of algorithms. Developers have
to write a “work-list” style loop and compute what needs updating on their own. Having a compiler able to
operate at the level of lattices would allow it to perform algorithm-level optimizations.

As an example, consider computing minimum path-lengths in a graph. This is easily specified by the
lattice rule that if the distance between A and B is at most /7 and the distance between B and C' is at most
l2, then the distance between A and C' is at most I; + lo. With relatively simple heuristics, a lattice-aware
compiler could use just this rule and invent Dijkstra’s algorithm for the programmer.

2.3 Domain Specific Languages and Extensible Languages

Domain specific languages (DSLs) allow programmers to use concepts and notations that match the
problem domain. In doing so DSLs make it easier to write clear and elegant code. Embedding a DSL

Michael D. Adams: Research Statement 2

in an existing language allows programmers to extend languages without having to start from scratch, and
one of my research goals is to improve the ways in which programmers can extend languages. For
example, allowing programmers to safely and soundly extend the type system or introduce domain-specific
error reporting.

One area that I am pursuing is the improvement of syntactic macros. That is to say allowing the
programmer to extend the grammar of the language itself. In fact much of my parsing research is ultimately
aimed at making this possible. For example, my work on restricting grammars with tree automata [§] is
aimed at solving compositionality problems that arise when mixing the syntaxes of different language
extensions.

3 Past and Continuing Work

3.1 Static Analysis [2] 9, 15|, 16]

A major aspect of my research has been improving the expressiveness, precision, and performance of
static analysis. The ultimate goal being for static analysis to determine the runtime behavior of software
and thus not only preemptively detect bugs and vulnerabilities but also enable compiler optimizations.

Type Recovery. In my work on type recovery [2,[9], I showed how to bring the complexity of type recovery
from O (nQ) to be only O (nlogn). Possible future work in this includes generalizing to other analyses and
eliminating the quadratic overhead of static single-assignment (SSA) representations.

APAC and STAC. From 2014 to 2019, I worked on two DARPAE] programs (APACE] and STACED aimed
at detecting software vulnerabilities in JVM (Java Virtual Machine) and Dalvik (Android) programs before
they are deployed. This research lead to both the Push-down for Free [16] and Allocation Characterizes
Polyvariance [I5] results.

Push-down for Free [I6] shows how to achieve perfect stack precision with no asymptotic over-
head. (Previous methods incurred quadratic overheads or worse.) Possible future work in this includes
generalizing it to other aspects of analysis and other analysis frameworks.

Allocation Characterizes Polyvariance [I5] shows how a wide variety of analysis polyvariance can be
generalized by choosing an appropriate allocation policy. Furthermore, all allocation policies produce
sound analyses. Thus, the allocation policy is a tunable parameter that can be freely adjusted to match
whatever sort of polyvariance is needed. This makes static analysis more expressive and customizable to
provide the exact right information for the property being analyzed.

3.2 Parsing [3, 5, [7, 8, 13|, 14, 12]

Though parsing is sometimes thought of as a solved problem, there has been a recent resurgence of research on
parsing. I have improved both the theoretical and practical performance of existing parsing techniques
as well as increased the expressiveness of grammars to more easily express common language patterns.

The Performance of Parsing with Derivatives. Parsing with derivatives is a parsing technique that
makes it easy to implement parsers in a number of languages. However, prior to my work, the lowest
computational bound for parsing with derivatives was exponential [I8]. My research [I3] lowered this bound
to a cubic bound (the same as many other parsing techniques). I also showed that simple modifications
greatly improved practical performance leading to an implementation that is both easy to understand
and performant in practice [14].

1Defense Advanced Research Projects Agency

2 Automated Program Analysis for Cybersecurity. https://www.darpa.mil/program/
automated-program-analysis-for-cybersecurity

3Space/Time Analysis for Cybersecurity. https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity
https://www.darpa.mil/program/automated-program-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Michael D. Adams: Research Statement 3

Restricting Grammars with Tree Automata. I have also extended parsing theory to cover situations
that are not easily handled by traditional context-free grammars. For example, I have shown how to handle
ambiguities by intersecting tree automata with context-free grammars [7,[8]. The result is a modular
system for composing grammatical restrictions. This forms a unified theory that subsumes many other
ambiguity-resolution techniques. Furthermore, I showed how tree automata expressible in a few lines
encode many kinds of restrictions needed in both classic problems and real-world languages.

Indentation Sensitive Parsing. Another way that I have extended parsing theory is to handle inden-
tation [3, B]. Several popular languages including Haskell, Python, and F# use the indentation and layout
of code as an essential part of their syntax. In the past, implementations of these languages used ad-hoc
techniques to implement layout.

I developed an extension to context-free grammars that can express these layout rules and derived LR(k),
GLR, and PEG parsing algorithms for parsing these grammars. These grammars are easy to write and can
be parsed efficiently. Furthermore, the theory is compossible and allows local indentation definitions.
This makes it easy to extend the indentation rules of a language in ways not foreseen when the indentation
rules were originally chosen.

3.3 Generic Programming and Meta-programming [1l, 4, (6], 10}, 11]

Another aspect of my research is generic programming and meta-programming. These can have a profound
impact on a programmer’s ability to extend a language, and giving programmers access to this
power motivates my research in this area.

Efficient Generic Programming. Generic programming allows programmers to elegantly express high-
level concepts (such as listing all identifiers in an abstract syntax tree). This leads to higher-level programs
that allow the programmer to focus on the more important parts of the algorithm without having to write
low-level details. However, many generic programming systems have runtime performance problems, being
up to twenty times slower than non-generic code. This forces programmers to choose between efficient but
verbose code and elegant but slow code. My research showed how to achieve the best of both worlds.

First, I developed Template Your Boilerplate [6], which uses meta-programming to simulate the generic
programming interface of Scrap Your Boilerplate. Thus programs can be written in the style of Scrap Your
Boilerplate without the performance cost.

Later, I improved on Template Your Boilerplate by creating an optimization that works directly on Scrap
Your Boilerplate code [10, [IT]. It improves the performance of Scrap Your Boilerplate to match that of hand
written code without any special effort on the part of the programmer.

Macro Hygiene. A long-standing challenge in meta-programming systems is avoiding unintended variable
capture (i.e., macro hygiene). However, while there are decades of research on various ways to implement
hygiene and a standard informal definition, prior to my work there was no formal way of specifying what
hygiene is and whether an algorithm implements it. This is in stark contrast to lexical scope, alpha-
equivalence and capture-avoiding substitution, which also deal with preventing unintended variable capture
but have widely applicable and well-understood mathematical definitions.

In my research [4], I developed precise, algorithm-independent, mathematical criteria for whether
macro expansion algorithms are hygienic. This characterization corresponds closely with existing hygiene
algorithms and sheds light on aspects of hygiene that are usually overlooked in informal definitions.

References

(1] Michael D. Adams. Scrap your zippers: a generic zipper for heterogeneous types. In Proceedings of the 6th ACM SIGPLAN
workshop on Generic programming, WGP ’10, pages 13-24, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0251-7.
doi: 10.1145/1863495.1863499.

[2] Michael D. Adams. Flow-Sensitive Control-Flow Analysis in Linear-Log Time. PhD thesis, Indiana University, 2011.

Michael D. Adams: Research Statement 4

3]

(4]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Michael D. Adams. Principled parsing for indentation-sensitive languages: revisiting landin’s offside rule. In Proceedings of
the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL 13, pages 511-522,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429129.

Michael D. Adams. Towards the essence of hygiene. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 457-469, New York, NY, USA, January 2015.
ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2677013.

Michael D. Adams and Omer S. Agacan. Indentation-sensitive parsing for parsec. In Proceedings of the 2014 ACM
SIGPLAN Symposium on Haskell, Haskell '14, pages 121-132, New York, NY, USA, September 2014. ACM. ISBN
978-1-4503-3041-1. doi: 10.1145/2633357.2633369.

Michael D. Adams and Thomas M. DuBuisson. Template your boilerplate: Using Template Haskell for efficient generic
programming. In Proceedings of the 2012 ACM SIGPLAN Haskell symposium, Haskell 12, pages 13—-24, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1574-6. doi: 10.1145/2364506.2364509.

Michael D. Adams and Matthew Might. Disambiguating grammars with tree automata. In Proceedings of Parsing@SLE,
October 2015.

Michael D. Adams and Matthew Might. Restricting grammars with tree automata. Proceedings of the ACM on Program-
ming Languages, 1(OOPSLA):82:1-82:25, October 2017. ISSN 2475-1421. doi: 10.1145/3133906.

Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew Might, Arun Chauhan, and R. Kent Dybvig. Flow-
sensitive type recovery in linear-log time. In Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11, pages 483-498, New York, NY, USA, October 2011.
ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048105.

Michael D. Adams, Andrew Farmer, and José Pedro Magalhdes. Optimizing SYB is easy! In Proceedings of the ACM
SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation, PEPM ’14, pages 71-82, New York, NY,
USA, January 2014. ACM. ISBN 978-1-4503-2619-3. doi: 10.1145/2543728.2543730.

Michael D. Adams, Andrew Farmer, and José Pedro Magalhdes. Optimizing SYB traversals is easy! Science of Computer
Programming, 112, Part 2:170-193, November 2015. ISSN 0167-6423. doi: 10.1016/j.scico.2015.09.003.

Michael D. Adams, Celeste Hollenbeck, and Matt Might. Derp 3, 2016. URL https://bitbucket.org/ucombinator/derp-3.

Michael D. Adams, Celeste Hollenbeck, and Matthew Might. On the complexity and performance of parsing with deriva-
tives. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’16, pages 224-236, New York, NY, USA, June 2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908128.

Pierce Darragh and Michael D. Adams. Parsing with zippers (fuctional pearl). Proceedings of the ACM on Programming
Languages, 4(ICFP):108:1-108:30, August 2020. ISSN 2475-1421. doi: 10.1145/3408990.

Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes polyvariance: a unified methodology
for polyvariant control-flow analysis. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, pages 407420, New York, NY, USA, September 2016. ACM. ISBN 978-1-4503-4219-3. doi:
10.1145/2951913.2951936.

Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn. Pushdown control-flow analysis for
free. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’16, pages 691-704, New York, NY, USA, January 2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.
2837631.

Hazel. Hazel: A live functional programming environment featuring typed holes, 2019. URL https://hazel.org/.

Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: a functional pearl. In Proceedings of the
16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11, pages 189-195, New York, NY,
USA, September 2011. ACM. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.2034801.

https://bitbucket.org/ucombinator/derp-3
https://hazel.org/

	Research Vision
	Current and Future Work
	Hazel and Structured Editing
	Lattice-Oriented Programming
	Domain Specific Languages and Extensible Languages

	Past and Continuing Work
	Static Analysis adams2011cfa,adams2011cfapaper,Gilray:2016:10.1145/2951913.2951936,Gilray:2016:10.1145/2837614.2837631
	Parsing adams2012layout,Adams:2014:10.1145/2633357.2633369,adams2015disambiguating,adams2017restricting,Adams:2016:10.1145/2908080.2908128,darragh2020parsing,derp3
	Generic Programming and Meta-programming Adams:2010:SYZ:1863495.1863499,Adams:2015:10.1145/2676726.2677013,adams2012tyb,Adams:2014:10.1145/2543728.2543730,Adams:2015:10.1016/j.scico.2015.09.003

